CHAPTER 3 STOICHIOMETRY OF FORMULAS AND EQUATIONS

END-OF-CHAPTER PROBLEMS

3.1 Plan: The atomic mass of an element expressed in amu is numerically the same as the mass of 1 mole of the element expressed in grams. We know the moles of each element and have to find the mass (in g). To convert moles of element to grams of element, multiply the number of moles by the molar mass of the element.
Solution:
Al $\quad 26.98 \mathrm{amu} \equiv 26.98 \mathrm{~g} / \mathrm{mol} \mathrm{Al}$

$$
\text { Mass } \mathrm{Al}(\mathrm{~g})=(3 \mathrm{~mol} \mathrm{Al})\left(\frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}\right)=\mathbf{8 0 . 9 4} \mathbf{g ~ A l}
$$

$\mathrm{Cl} \quad 35.45 \mathrm{amu} \equiv 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl}$
Mass $\mathrm{Cl}(\mathrm{g})=(2 \mathrm{~mol} \mathrm{Cl})\left(\frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}\right)=70.90 \mathbf{g ~ C l}$
3.2 Plan: The molecular formula of sucrose tells us that 1 mole of sucrose contains 12 moles of carbon atoms. Multiply the moles of sucrose by 12 to obtain moles of carbon atoms; multiply the moles of carbon atoms by Avogadro's number to convert from moles to atoms.
Solution:
a) Moles of C atoms $=\left(1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\left(\frac{12 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}\right)=\mathbf{1 2} \mathbf{~ m o l ~ C}$
b) C atoms $=\left(2 \mathrm{molC}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\left(\frac{12 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{C} \text { atoms }}{1 \mathrm{~mol} \mathrm{C}}\right)=\mathbf{1 . 4 4 5 \times 1 0 ^ { 2 5 }} \mathbf{C}$ atoms
3.3 Plan: Review the list of elements that exist as diatomic or polyatomic molecules. Solution:
" 1 mol of chlorine" could be interpreted as a mole of chlorine atoms or a mole of chlorine molecules, Cl_{2}. Specify which to avoid confusion. The same problem is possible with other diatomic or polyatomic molecules, e.g., F_{2}, $\mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~S}_{8}$, and P_{4}. For these elements, as for chlorine, it is not clear if atoms or molecules are being discussed.
3.4 The molecular mass is the sum of the atomic masses of the atoms or ions in a molecule. The molar mass is the mass of 1 mole of a chemical entity. Both will have the same numeric value for a given chemical substance but molecular mass will have the units of amu and molar mass will have the units of $\mathrm{g} / \mathrm{mol}$.
3.5 A mole of a particular substance represents a fixed number of chemical entities and has a fixed mass. Therefore the mole gives us an easy way to determine the number of particles (atoms, molecules, etc.) in a sample by weighing it. The mole maintains the same mass relationship between macroscopic samples as exist between individual chemical entities. It relates the number of chemical entities (atoms, molecules, ions, electrons) to the mass.
3.6 Plan: The relative atomic masses of each element can be found by counting the number of atoms of each element and comparing the overall masses of the two samples.
Solution:
a) Balance A: The element on the left (green) has the higher molar mass because only 5 green balls are necessary to counterbalance the mass of 6 yellow balls. Since the green ball is heavier, its atomic mass is larger, and therefore its molar mass is larger. Balance B : The element on the right (blue) has the higher molar mass since 3 blue balls are heavier than 6 red balls. Since the blue ball is heavier, its atomic mass is larger, and therefore its
molar mass is larger. Balance C: The element on the left (orange) has the higher molar mass because 5 orange balls are heavier than 5 purple balls. Since the orange ball is heavier, its atomic mass is larger, and therefore its molar mass is larger. Balance D: The element on the left (gray) has the higher molar mass because only 5 gray balls are necessary to counterbalance the mass of 7 red balls. Since the gray ball is heavier, its atomic mass is larger, and therefore its molar mass is larger.
b) The elements on the right in Balances A, C, and D have more atoms per gram. The element on the right in each of these balances is lighter. Because these elements are lighter, more atoms are required to make 1 g . In Balance B, the element on the left is lighter and would therefore require more atoms to make 1 g .
c) The elements on the left in Balances A, C, and D have fewer atoms per gram. Atoms of these elements are heavier, and it takes fewer balls to make 1 g . In Balance B, the element on the right is heavier and therefore has fewer atoms per gram.
d) Neither element on any of the balances has more atoms per mole. Both the left and right elements have the same number of atoms per mole. The number of atoms per mole $\left(6.022 \times 10^{23}\right)$ is constant and so is the same for every element.
3.7 Plan: Locate each of the elements on the periodic table and record its atomic mass. The atomic mass of the element multiplied by the number of atoms present in the formula gives the mass of that element in one mole of the substance. The molar mass is the sum of the masses of the elements in the substance expressed in $\mathrm{g} / \mathrm{mol}$.
Solution:

```
a) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Sr\()+(2 \times \mathcal{M}\) of O\()+(2 \times \boldsymbol{M}\) of H\()\)
    \(=(1 \times 87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+(2 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})+(2 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})\)
    \(=121.64 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{Sr}(\mathrm{OH})_{2}\)
b) \(\boldsymbol{\mathcal { M }}=(2 \times \boldsymbol{M}\) of N\()+(3 \times \boldsymbol{M}\) of O\()\)
    \(=(2 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=76.02 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{N}_{2} \mathrm{O}_{3}\)
c) \(\boldsymbol{\mathcal { M }}=(1 \times \mathcal{M}\) of Na\()+(1 \times \mathcal{M}\) of Cl\()+(3 \times \mathcal{M}\) of O\()\)
    \(=(1 \times 22.99 \mathrm{~g} / \mathrm{mol} \mathrm{Na})+(1 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=106.44 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{NaClO}_{3}\)
d) \(\boldsymbol{M}=(2 \times \boldsymbol{M}\) of Cr\()+(3 \times \boldsymbol{M}\) of O\()\)
    \(=(2 \times 52.00 \mathrm{~g} / \mathrm{mol} \mathrm{Cr})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=152.00 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{Cr}_{2} \mathrm{O}_{3}\)
```

3.8 Plan: Locate each of the elements on the periodic table and record its atomic mass. The atomic mass of the element multiplied by the number of atoms present in the formula gives the mass of that element in one mole of the substance. The molar mass is the sum of the masses of the elements in the substance expressed in $\mathrm{g} / \mathrm{mol}$.
Solution:

```
a) \(\boldsymbol{\mathcal { M }}=(3 \times \boldsymbol{M}\) of N\()+(12 \times \mathcal{M}\) of H\()+(1 \times \mathcal{M}\) of P\()+(4 \times \mathcal{M}\) of O\()\)
    \(=(3 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N})+(12 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(1 \times 30.97 \mathrm{~g} / \mathrm{mol} \mathrm{P})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=149.10 \mathrm{~g} / \mathrm{mol}\) of \(\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}\)
b) \(\boldsymbol{\mathcal { M }}=(1 \times \mathcal{M}\) of C\()+(2 \times \mathcal{M}\) of H\()+(2 \times \mathcal{M}\) of Cl)
    \(=(1 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(2 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(2 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})\)
    \(=84.93 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
c) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Cu\()+(1 \times \mathcal{M}\) of S\()+(9 \times \mathcal{M}\) of O\()+(10 \times \boldsymbol{M}\) of H\()\)
    \(=(1 \times 63.55 \mathrm{~g} / \mathrm{mol} \mathrm{Cu})+(1 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{S})+(9 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})+(10 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})\)
    \(=249.70 \mathrm{~g} / \mathrm{mol}^{2} \mathrm{CuSO}_{4}{ }^{\bullet}{ }^{5} \mathrm{H}_{2} \mathrm{O}\)
d) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Br\()+(3 \mathrm{x} \boldsymbol{\mathcal { M }}\) of F\()\)
    \(=(1 \times 79.90 \mathrm{~g} / \mathrm{mol} \mathrm{Br})+(3 \times 19.00 \mathrm{~g} / \mathrm{mol} \mathrm{F})\)
    \(=136.90 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{BrF}_{3}\)
```

3.9 Plan: Locate each of the elements on the periodic table and record its atomic mass. The atomic mass of the element multiplied by the number of atoms present in the formula gives the mass of that element in one mole of the substance. The molar mass is the sum of the masses of the elements in the substance expressed in $\mathrm{g} / \mathrm{mol}$.

Solution:

```
a) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Sn\()+(1 \times \boldsymbol{M}\) of O\()\)
    \(=(1 \times 118.7 \mathrm{~g} / \mathrm{mol} \mathrm{Sn})+(1 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=134.7 \mathrm{~g} / \mathrm{mol}\) of SnO
b) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Ba) \(+(2 \times \boldsymbol{M}\) of F\()\)
    \(=(1 \times 137.3 \mathrm{~g} / \mathrm{mol} \mathrm{Ba})+(2 \times 19.00 \mathrm{~g} / \mathrm{mol} \mathrm{F})\)
    \(=175.3 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{BaF}_{2}\)
c) \(\boldsymbol{M}=(2 \times \mathcal{M}\) of Al\()+(3 \mathrm{x} \boldsymbol{M}\) of S\()+(12 \mathrm{x} \boldsymbol{M}\) of O\()\)
    \(=(2 \times 26.98 \mathrm{~g} / \mathrm{mol} \mathrm{Al})+(3 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{S})+(12 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=342.17 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\)
d) \(\boldsymbol{M}=(1 \times \boldsymbol{M}\) of Mn\()+(2 \times \mathcal{M}\) of Cl\()\)
    \(=(1 \times 54.94 \mathrm{~g} / \mathrm{mol} \mathrm{Mn})+(2 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})\)
    \(=125.84 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{MnCl}_{2}\)
```

3.10 Plan: Locate each of the elements on the periodic table and record its atomic mass. The atomic mass of the element multiplied by the number of atoms present in the formula gives the mass of that element in one mole of the substance. The molar mass is the sum of the masses of the elements in the substance expressed in $\mathrm{g} / \mathrm{mol}$. Solution:

```
a) \(\boldsymbol{\mathcal { M }}=(2 \times \mathcal{M}\) of N\()+(4 \times \boldsymbol{M}\) of O\()\)
    \(=(2 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=92.02 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{N}_{2} \mathrm{O}_{4}\)
b) \(\boldsymbol{\mathcal { M }}=(4 \times \mathcal{M}\) of C\()+(10 \times \mathcal{M}\) of H\()+(1 \times \mathcal{M}\) of O\()\)
    \(=(4 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(10 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(1 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=74.12 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{C}_{4} \mathrm{H}_{\mathbf{9}} \mathrm{OH}\)
c) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Mg\()+(1 \times \boldsymbol{M}\) of S\()+(11 \times \mathcal{M}\) of O\()+(14 \times \mathcal{M}\) of H\()\)
    \(=(1 \times 24.31 \mathrm{~g} / \mathrm{mol} \mathrm{Mg})+(1 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{S})+(11 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})+(14 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})\)
    \(=246.49 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{MgSO}_{4} \cdot \mathbf{7 \mathrm { H } _ { 2 } \mathrm { O }}\)
d) \(\boldsymbol{\mathcal { M }}=(1 \times \boldsymbol{M}\) of Ca\()+(4 \times \mathcal{M}\) of C\()+(6 \times \boldsymbol{\mathcal { M }}\) of H\()+(4 \times \boldsymbol{\mathcal { M }}\) of O\()\)
    \(=(1 \times 40.08 \mathrm{~g} / \mathrm{mol} \mathrm{Ca})+(4 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(6 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})\)
    \(=158.17 \mathrm{~g} / \mathrm{mol}\) of \(\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\)
```

3.11 Plan: Determine the molar mass of each substance, then perform the appropriate molar conversions.

To find the mass in part a), multiply the number of moles by the molar mass of the substance. In part b), first convert mass of compound to moles of compound by dividing by the molar mass of the compound. The molecular formula of the compound tells us that 1 mole of compound contains 6 moles of oxygen atoms; use the 1:6 ratio to convert moles of compound to moles of oxygen atoms. In part c), convert mass of compound to moles of compound by dividing by the molar mass of the compound. Since 1 mole of compound contains 6 moles of oxygen atoms, multiply the moles of compound by 6 to obtain moles of oxygen atoms; then multiply by Avogadro's number to obtain the number of oxygen atoms.

Solution:

$$
\begin{aligned}
& \text { a) } \boldsymbol{\mathcal { M }} \text { of } \mathrm{KMnO}_{4}=(1 \times \boldsymbol{M} \text { of } \mathrm{K})+(1 \mathrm{x} \boldsymbol{\mathcal { M }} \text { of } \mathrm{Mn})+(4 \times \boldsymbol{\mathcal { M }} \text { of } \mathrm{O}) \\
& =(1 \times 39.10 \mathrm{~g} / \mathrm{mol} \mathrm{~K})+(1 \times 54.94 \mathrm{~g} / \mathrm{mol} \mathrm{Mn})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=158.04 \mathrm{~g} / \mathrm{mol}^{2} \text { of } \mathrm{KMnO}_{4} \\
& \text { Mass of } \mathrm{KMnO}_{4}=\left(0.68 \mathrm{~mol} \mathrm{KMnO}_{4}\right)\left(\frac{158.04 \mathrm{~g} \mathrm{KMnO}_{4}}{1 \mathrm{~mol} \mathrm{KMnO}_{4}}\right)=107.467=\mathbf{1 . 1} \mathbf{x 1 0} \mathbf{}^{\mathbf{2}} \mathbf{g} \mathbf{K M n O}_{4} \\
& \text { b) } \mathcal{M} \text { of } \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=(1 \times \mathcal{M} \text { of Ba) }+(2 \times \mathcal{M} \text { of } \mathrm{N})+(6 \times \mathcal{M} \text { of } \mathrm{O}) \\
& =(1 \times 137.3 \mathrm{~g} / \mathrm{mol} \mathrm{Ba})+(2 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})+(6 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=261.3 \mathrm{~g} / \mathrm{mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \\
& \text { Moles of } \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=\left(8.18 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}{261.3 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}\right)=0.031305 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \\
& \text { Moles of } \mathrm{O} \text { atoms }=\left(0.031305 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{6 \mathrm{~mol} \mathrm{O} \text { atoms }}{1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}\right)=0.18783=\mathbf{0 . 1 8 8} \mathbf{~ m o l ~ O} \text { atoms } \\
& \text { c) } \boldsymbol{M} \text { of } \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(1 \times \boldsymbol{M} \text { of } \mathrm{Ca})+(1 \times \boldsymbol{M} \text { of } \mathrm{S})+(6 \times \mathcal{M} \text { of } \mathrm{O})+(4 \mathrm{x} \boldsymbol{\mathcal { M }} \text { of } \mathrm{H}) \\
& =(1 \times 40.08 \mathrm{~g} / \mathrm{mol} \mathrm{Ca})+(1 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{~S})+(6 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})+(4 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}) \\
& =172.18 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

(Note that the waters of hydration are included in the molar mass.)

$$
\begin{aligned}
& \text { Moles of } \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\left(7.3 \times 10^{-3} \mathrm{~g} \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}}{172.18 \mathrm{~g} \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}}\right)=4.239749 \times 10^{-5} \mathrm{~mol} \\
& \begin{aligned}
\text { Moles of O atoms } & =\left(4.239749 \times 10^{-5} \mathrm{~mol} \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{\left.6 \mathrm{~mol} \mathrm{O} \text { atoms }_{1 \mathrm{~mol} \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}}\right)}{}=2.54385 \times 10^{-5} \mathrm{~mol} \mathrm{O}\right. \text { atoms } \\
\text { Number of O atoms } & =\left(2.54385 \times 10^{-4} \mathrm{~mol} \mathrm{O} \text { atoms }\right)\left(\frac{6.022 \times 10^{23} \mathrm{O} \text { atoms }}{1 \mathrm{~mol} \mathrm{O} \text { atoms }}\right) \\
& =1.5319 \times 10^{20}=\mathbf{1 . 5 \times 1 0} \mathbf{0}^{20} \mathbf{O} \text { atoms }
\end{aligned}
\end{aligned}
$$

3.12 Plan: Determine the molar mass of each substance, then perform the appropriate molar conversions. To find the mass in part a), divide the number of molecules by Avogadro's number to find moles of compound and then multiply the mole amount by the molar mass in grams; convert from mass in g to mass in kg . In part b), first convert mass of compound to moles of compound by dividing by the molar mass of the compound. The molecular formula of the compound tells us that 1 mole of compound contains 2 moles of chlorine atoms; use the 1:2 ratio to convert moles of compound to moles of chlorine atoms. In part c), convert mass of compound to moles of compound by dividing by the molar mass of the compound. Since 1 mole of compound contains 2 moles of H^{-}ions, multiply the moles of compound by 2 to obtain moles of H^{-}ions; then multiply by Avogadro's number to obtain the number of H^{-}ions.
Solution:
a) $\boldsymbol{\mathcal { M }}$ of $\mathrm{NO}_{2}=(1 \times \boldsymbol{M}$ of N$)+(2 \times \mathcal{M}$ of O$)$

$$
=(1 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})+(2 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=46.01 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{NO}_{2}
$$

Moles of $\mathrm{NO}_{2}=\left(4.6 \times 10^{21}\right.$ molecules $\left.\mathrm{NO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NO}_{2}}{6.022 \times 10^{23} \text { molecules } \mathrm{NO}_{2}}\right)=7.63866 \times 10^{-3} \mathrm{~mol} \mathrm{NO}_{2}$
Mass (kg) of $\mathrm{NO}_{2}=\left(7.63866 \times 10^{-3} \mathrm{~mol} \mathrm{NO}_{2}\right)\left(\frac{46.01 \mathrm{~g} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{NO}_{2}}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=3.51455 \times 10^{-4}=\mathbf{3 . 5} \mathbf{x 1 0} \mathbf{0}^{-4} \mathbf{~ k g ~ N O}_{2}$
b) \mathcal{M} of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}=(2 \times \boldsymbol{M}$ of C$)+(4 \times \boldsymbol{M}$ of H$)+(2 \times \boldsymbol{M}$ of Cl $)$

$$
=(2 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(4 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(2 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})=98.95 \mathrm{~g} / \mathrm{mol}^{\circ} \text { of } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}
$$

Moles of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}=\left(0.0615 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}}{98.95 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}}\right)=6.21526 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
Moles of Cl atoms $=\left(6.21526 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Cl} \text { atoms }}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}}\right)=1.2431 \times 10^{-3}$
$=1.24 \times 10^{-3} \mathrm{~mol} \mathrm{Cl}$ atoms
c) \mathcal{M} of $\mathrm{SrH}_{2}=(1 \times \boldsymbol{M}$ of Sr$)+(2 \times \boldsymbol{M}$ of H$)=(1 \times 87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+(2 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})=89.64 \mathrm{~g} / \mathrm{mol}$ of SrH_{2}
Moles of $\mathrm{SrH}_{2}=\left(5.82 \mathrm{~g} \mathrm{SrH}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SrH}_{2}}{89.64 \mathrm{~g} \mathrm{SrH}_{2}}\right)=0.0649264 \mathrm{~mol} \mathrm{SrH}_{2}$
Moles of H^{-}ions $=\left(0.0649264 \mathrm{~mol} \mathrm{SrH}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}^{-}}{1 \mathrm{~mol} \mathrm{SrH}_{2}}\right)=0.1298528 \mathrm{~mol} \mathrm{H}^{-}$ions
Number of H^{-}ions $=\left(0.1298528 \mathrm{~mol} \mathrm{H}{ }^{-}\right.$ions $)\left(\frac{6.022 \times 10^{23} \mathrm{H}^{-} \text {ions }}{1 \mathrm{~mol} \mathrm{H}^{-}}\right)=7.81974 \times 10^{22}=7.82 \times 1 \mathbf{x}^{22} \mathbf{H}^{-}$ions
3.13 Plan: Determine the molar mass of each substance, then perform the appropriate molar conversions. To find the mass in part a), multiply the number of moles by the molar mass of the substance. In part b), first convert the mass of compound in kg to mass in g and divide by the molar mass of the compound to find moles of compound. In part c), convert mass of compound in mg to mass in g and divide by the molar mass of the compound to find
moles of compound. Since 1 mole of compound contains 2 moles of nitrogen atoms, multiply the moles of compound by 2 to obtain moles of nitrogen atoms; then multiply by Avogadro's number to obtain the number of nitrogen atoms.

Solution:

a) \mathcal{M} of $\mathrm{MnSO}_{4}=(1 \times \mathcal{M}$ of Mn$)+(1 \times \mathcal{M}$ of S$)+(4 \times \mathcal{M}$ of O$)$

$$
=(1 \times 54.94 \mathrm{~g} / \mathrm{mol} \mathrm{Mn})+(1 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{~S})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=151.01 \mathrm{~g} / \mathrm{mol}^{2} \text { of } \mathrm{MnSO}_{4}
$$

Mass (g) of $\mathrm{MnSO}_{4}=\left(6.44 \times 10^{-2} \mathrm{~mol} \mathrm{MnSO}_{4}\right)\left(\frac{151.01 \mathrm{~g} \mathrm{MnSO}_{4}}{1 \mathrm{~mol} \mathrm{MnSO}_{4}}\right)=9.725044=\mathbf{9 . 7 3} \mathbf{g ~ M n S O} 4$
b) $\boldsymbol{\mathcal { M }}$ of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}=(1 \times \mathcal{M}$ of Fe$)+(3 \times \mathcal{M}$ of Cl$)+(12 \times \mathcal{M}$ of O$)$

$$
\begin{aligned}
& =(1 \times 55.85 \mathrm{~g} / \mathrm{mol} \mathrm{Fe})+(3 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{~S})+(12 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}) \\
& =354.20 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}
\end{aligned}
$$

Mass (g) of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}=\left(15.8 \mathrm{~kg} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}\right)\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=1.58 \times 10^{4} \mathrm{~kg} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$
Moles of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}=\left(1.58 \times 10^{4} \mathrm{~g} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}}{354.20 \mathrm{~g} \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}}\right)=44.6076=44.6 \mathbf{m o l ~ F e}\left(\mathrm{ClO}_{4}\right)_{3}$
c) \mathcal{M} of $\mathrm{NH}_{4} \mathrm{NO}_{2}=(2 \mathrm{x} \mathcal{M}$ of N$)+(4 \times \mathcal{M}$ of H$)+(2 \mathrm{x} \boldsymbol{\mathcal { M }}$ of O$)$

$$
=(2 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})+(4 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(2 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=64.05 \mathrm{~g} / \mathrm{mol} \mathrm{NH}_{4} \mathrm{NO}_{2}
$$

Mass (g) of $\mathrm{NH}_{4} \mathrm{NO}_{2}=\left(92.6 \mathrm{mg} \mathrm{NH} \mathrm{NO}_{2}\right)\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)=0.0926 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{2}$
Moles of $\mathrm{NH}_{4} \mathrm{NO}_{2}=\left(0.0926 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}}{64.05 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{2}}\right)=1.44575 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}$
Moles of N atoms $=\left(1.44575 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~N} \text { atoms }}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}}\right)=2.8915 \times 10^{-3} \mathrm{~mol} \mathrm{~N}$ atoms
Number of N atoms $=\left(2.8915 \times 10^{-3} \mathrm{~mol} \mathrm{~N}\right.$ atoms $)\left(\frac{6.022 \times 10^{23} \mathrm{~N} \text { atoms }}{1 \mathrm{~mol} \mathrm{~N} \text { atoms }}\right)$

$$
=1.74126 \times 10^{21}=\mathbf{1 . 7 4} \times 1 \mathbf{0}^{\mathbf{2 1}} \mathbf{N} \text { atoms }
$$

Plan: Determine the molar mass of each substance, then perform the appropriate molar conversions. In part a), divide the mass by the molar mass of the compound to find moles of compound. Since 1 mole of compound contains 3 moles of ions (1 mole of Sr^{2+} and 2 moles of F^{-}), multiply the moles of compound by 3 to obtain moles of ions and then multiply by Avogadro's number to obtain the number of ions. In part b), multiply the number of moles by the molar mass of the substance to find the mass in g and then convert to kg . In part c), divide the number of formula units by Avogadro's number to find moles; multiply the number of moles by the molar mass to obtain the mass in g and then convert to mg .

Solution:

a) \mathcal{M} of $\mathrm{SrF}_{2}=(1 \times \mathcal{M}$ of Sr$)+(2 \times \mathcal{M}$ of F$)$

$$
=(1 \times 87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+(2 \times 19.00 \mathrm{~g} / \mathrm{mol} \mathrm{~F})=125.62 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{SrF}_{2}
$$

Moles of $\operatorname{SrF}_{2}=\left(38.1 \mathrm{~g} \mathrm{SrF}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SrF}_{2}}{125.62 \mathrm{~g} \mathrm{SrF}_{2}}\right)=0.303296 \mathrm{~mol} \mathrm{SrF}_{2}$
Moles of ions $=\left(0.303296 \mathrm{~mol} \mathrm{SrF}_{2}\right)\left(\frac{3 \mathrm{~mol} \text { ions }}{1 \mathrm{~mol} \mathrm{SrF}_{2}}\right)=0.909888 \mathrm{~mol}$ ions
Number of ions $=(0.909888 \mathrm{~mol}$ ions $)\left(\frac{6.022 \times 10^{23} \text { ions }}{1 \mathrm{~mol} \text { ions }}\right)=5.47935 \times 10^{23}=\mathbf{5 . 4 8 \times 1 0 ^ { 2 3 }} \mathbf{i o n s}$
b) \mathcal{M} of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=(1 \times \boldsymbol{M}$ of Cu $)+(2 \mathrm{x} \boldsymbol{\mathcal { M }}$ of Cl$)+(4 \mathrm{x} \boldsymbol{\mathcal { M }}$ of H$)+(2 \mathrm{x} \boldsymbol{\mathcal { M }}$ of O$)$

$$
\begin{aligned}
& =(1 \times 63.55 \mathrm{~g} / \mathrm{mol} \mathrm{Cu})+(2 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})+(4 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(2 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}) \\
& =170.48 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(Note that the waters of hydration are included in the molar mass.)
Mass (g) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\left(3.58 \mathrm{~mol} \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{170.48 \mathrm{~g} \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}}\right)=610.32 \mathrm{~g} \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Mass (kg) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\left(610.32 \mathrm{~g} \mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=0.61032=\mathbf{0 . 6 1 0} \mathbf{~ k g ~ C u C l} 2 \cdot 2 \mathbf{H}_{2} \mathbf{O}$
c) $\boldsymbol{\mathcal { M }}$ of $\operatorname{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}=(1 \times \boldsymbol{M}$ of Bi$)+(3 \mathrm{x} \boldsymbol{\mathcal { M }}$ of N$)+(10 \times \boldsymbol{\mathcal { M }}$ of H$)+(14 \times \boldsymbol{\mathcal { M }}$ of O$)$
$=(1 \times 209.0 \mathrm{~g} / \mathrm{mol} \mathrm{Bi})+(3 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N})+(10 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})$
$+(14 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{H})=485.11 \mathrm{~g} / \mathrm{mol}$ of
$\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(Note that the waters of hydration are included in the molar mass.)
Moles of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\left(2.88 \times 10^{22} \mathrm{FU}\right)\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \mathrm{FU}}\right)=0.047825 \mathrm{~mol} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
Mass (g) of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\left(0.047825 \mathrm{~mol} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{485.1 \mathrm{~g} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}}\right)=23.1999 \mathrm{~g}$
Mass (mg) of $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\left(23.1999 \mathrm{~g} \mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{mg}}{10^{-3} \mathrm{~g}}\right)$
$=23199.9=\mathbf{2 . 3 2 \times 1 0} \mathbf{}^{\mathbf{4}} \mathbf{~ m g ~ B i}\left(\mathbf{N O}_{3}\right)_{3} \cdot \mathbf{5} \mathbf{H}_{2} \mathbf{O}$
Plan: The formula of each compound must be determined from its name. The molar mass for each formula comes from the formula and atomic masses from the periodic table. Determine the molar mass of each substance, then perform the appropriate molar conversions. In part a), multiply the moles by the molar mass of the compound to find the mass of the sample. In part b), divide the number of molecules by Avogadro's number to find moles; multiply the number of moles by the molar mass to obtain the mass. In part c), divide the mass by the molar mass to find moles of compound and multiply moles by Avogadro's number to find the number of formula units. In part d), use the fact that each formula unit contains 1 Na ion, 1 perchlorate ion, 1 Cl atom, and 4 O atoms.
Solution:
a) Carbonate is a polyatomic anion with the formula, $\mathrm{CO}_{3}{ }^{2-}$. Copper(I) indicates Cu^{+}. The correct formula for this ionic compound is $\mathrm{Cu}_{2} \mathrm{CO}_{3}$.
\mathcal{M} of $\mathrm{Cu}_{2} \mathrm{CO}_{3}=(2 \mathrm{x} \boldsymbol{\mathcal { M }}$ of Cu$)+(1 \times \mathcal{M}$ of C$)+(3 \times \mathcal{M}$ of O$)$

$$
=(2 \times 63.55 \mathrm{~g} / \mathrm{mol} \mathrm{Cu})+(1 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=187.11 \mathrm{~g} / \mathrm{mol}^{2} \text { of } \mathrm{Cu}_{2} \mathrm{CO}_{3}
$$

Mass (g) of $\mathrm{Cu}_{2} \mathrm{CO}_{3}=\left(8.35 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{CO}_{3}\right)\left(\frac{187.11 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{CO}_{3}}{1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{CO}_{3}}\right)=1562.4=\mathbf{1 . 5 6 x 1 0} \mathbf{g ~ C u}_{2} \mathbf{C O}_{\mathbf{3}}$
b) Dinitrogen pentaoxide has the formula $\mathrm{N}_{2} \mathrm{O}_{5}$. Di- indicates 2 N atoms and penta- indicates 5 O atoms. \mathcal{M} of $\mathrm{N}_{2} \mathrm{O}_{5}=(2 \times \mathcal{M}$ of N$)+(5 \times \mathcal{M}$ of O$)$

$$
=(2 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})+(5 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=108.02 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{N}_{2} \mathrm{O}_{5}
$$

Moles of $\mathrm{N}_{2} \mathrm{O}_{5}=\left(4.04 \times 10^{20} \mathrm{~N}_{2} \mathrm{O}_{5}\right.$ molecules $)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{5}}{6.022 \times 10^{23} \mathrm{~N}_{2} \mathrm{O}_{5} \text { molecules }}\right)=6.7087 \times 10^{-4} \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{5}$
Mass (g) of $\mathrm{N}_{2} \mathrm{O}_{5}=\left(6.7087 \times 10^{-4} \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{5}\right)\left(\frac{108.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{5}}{1 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}_{5}}\right)=0.072467=\mathbf{0 . 0 7 2 5} \mathbf{g ~ N}_{2} \mathbf{O}_{5}$
c) The correct formula for this ionic compound is NaClO_{4}; Na has a charge of +1 (Group 1 ion) and the perchlorate ion is ClO_{4}^{-}.
\boldsymbol{M} of $\mathrm{NaClO}_{4}=(1 \mathrm{x} \boldsymbol{\mathcal { M }}$ of Na$)+(1 \times \boldsymbol{M}$ of Cl$)+(4 \times \boldsymbol{M}$ of O$)$

$$
=(1 \times 22.99 \mathrm{~g} / \mathrm{mol} \mathrm{Na})+(1 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=122.44 \mathrm{~g} / \mathrm{mol}^{2} \text { of } \mathrm{NaClO}_{4}
$$

Moles of $\mathrm{NaClO}_{4}=\left(78.9 \mathrm{~g} \mathrm{NaClO}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaClO}_{4}}{122.44 \mathrm{~g} \mathrm{NaClO}_{4}}\right)=0.644397=\mathbf{0 . 6 4 4} \mathbf{~ m o l ~ N a C l O} 4$
$\mathrm{FU}=$ formula units

FU of $\mathrm{NaClO}_{4}=\left(0.644397 \mathrm{~mol} \mathrm{NaClO}_{4}\right)\left(\frac{6.022 \times 10^{23} \mathrm{FU} \mathrm{NaClO}_{4}}{1 \mathrm{~mol} \mathrm{NaClO}_{4}}\right)$

$$
=3.88056 \times 10^{23}=3.88 \times 10^{23} \mathbf{F U ~ N a C l O} 4
$$

d) Number of Na^{+}ions $=\left(3.88056 \times 10^{23} \mathrm{FU} \mathrm{NaClO}_{4}\right)\left(\frac{1 \mathrm{Na}^{+} \text {ion }}{1 \mathrm{FU} \mathrm{NaClO}} 44\right)=\mathbf{3 . 8 8 \times 1 0} \mathbf{0}^{23} \mathbf{N a}^{+}$ions

Number of ClO_{4}^{-}ions $=\left(3.88056 \times 10^{23} \mathrm{FU} \mathrm{NaClO}_{4}\right)\left(\frac{1 \mathrm{ClO}_{4}^{-} \text {ion }}{1 \mathrm{FU} \mathrm{NaClO}} 44\right)=\mathbf{3 . 8 8 \times 1 0} \mathbf{N a}^{23} \mathbf{C l O}_{4}^{-}$ions
Number of Cl atoms $=\left(3.88056 \times 10^{23} \mathrm{FU} \mathrm{NaClO}_{4}\right)\left(\frac{1 \mathrm{Cl} \text { atom }}{1 \mathrm{FU} \mathrm{NaClO}} 44\right)=\mathbf{3 . 8 8 \times 1 0} \mathbf{1 0}^{\mathbf{2 3}} \mathbf{C l}$ atoms
Number of O atoms $=\left(3.88056 \times 10^{23} \mathrm{FU} \mathrm{NaClO}_{4}\right)\left(\frac{4 \mathrm{O} \text { atoms }}{1 \mathrm{FU} \mathrm{NaClO}} 44\right)=\mathbf{1 . 5 5} \mathbf{x 1 0} \mathbf{N a}^{\mathbf{2 4}} \mathbf{O}$ atoms
Plan: The formula of each compound must be determined from its name. The molar mass for each formula comes from the formula and atomic masses from the periodic table. Determine the molar mass of each substance, then perform the appropriate molar conversions. In part a), multiply the moles by the molar mass of the compound to find the mass of the sample. In part b), divide the number of molecules by Avogadro's number to find moles; multiply the number of moles by the molar mass to obtain the mass. In part c), divide the mass by the molar mass to find moles of compound and multiply moles by Avogadro's number to find the number of formula units. In part d), use the fact that each formula unit contains 2 Li ions, 1 sulfate ion, 1 S atom, and 4 O atoms.
Solution:
a) Sulfate is a polyatomic anion with the formula, $\mathrm{SO}_{4}{ }^{2-}$. Chromium(III) indicates Cr^{3+}. Decahydrate indicates 10 water molecules ("waters of hydration"). The correct formula for this ionic compound is $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$. \mathcal{M} of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=(2 \mathrm{x} \boldsymbol{\mathcal { M }}$ of Cr$)+(3 \mathrm{x} \boldsymbol{\mathcal { M }}$ of S$)+(22 \mathrm{x} \boldsymbol{\mathcal { M }}$ of O$)+(20 \times \mathcal{M}$ of H$)$

$$
\begin{aligned}
& =\left(2 \times 52.00 \mathrm{~g} / \mathrm{mol} \mathrm{Cr}^{2}\right)+(3 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{~S})+(22 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})+(20 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}) \\
& =572.4 \mathrm{~g} / \mathrm{mol} \mathrm{of} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Mass (g) of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}=\left(8.42 \mathrm{~mol} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{572.4 \mathrm{~g}}{\mathrm{~mol}}\right)$

$$
=4819.608=4.82 \times 10^{3} \operatorname{g~Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}
$$

b) Dichlorine heptaoxide has the formula $\mathrm{Cl}_{2} \mathrm{O}_{7}$. Di- indicates 2 Cl atoms and hepta- indicates 7 O atoms. \boldsymbol{M} of $\mathrm{Cl}_{2} \mathrm{O}_{7}=(2 \times \boldsymbol{M}$ of Cl$)+(7 \times \mathcal{M}$ of O$)$

$$
=(2 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})+(7 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=182.9 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{Cl}_{2} \mathrm{O}_{7}
$$

Moles of $\mathrm{Cl}_{2} \mathrm{O}_{7}=\left(1.83 \times 10^{24}\right.$ molecules $\left.\mathrm{Cl}_{2} \mathrm{O}_{7}\right)\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { molecules }}\right)=3.038858 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}_{7}$

Mass (g) of $\mathrm{Cl}_{2} \mathrm{O}_{7}=\left(3.038858 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}_{7}\right)\left(\frac{182.9 \mathrm{~g} \mathrm{Cl}_{2} \mathrm{O}_{7}}{1 \mathrm{~mol}}\right)=555.807=\mathbf{5 . 5 6 \times 1 0} \mathbf{0}^{\mathbf{2}} \mathbf{g ~ C l}_{2} \mathbf{O}_{7}$
c) The correct formula for this ionic compound is $\mathrm{Li}_{2} \mathrm{SO}_{4}$; Li has a charge of +1 (Group 1 ion) and the sulfate ion is $\mathrm{SO}_{4}{ }^{2-}$.
\mathcal{M} of $\mathrm{Li}_{2} \mathrm{SO}_{4}=(2 \mathrm{x} \boldsymbol{M}$ of Li$)+(1 \times \boldsymbol{M}$ of S$)+(4 \mathrm{x} \boldsymbol{\mathcal { M }}$ of O$)$

$$
=(2 \times 6.941 \mathrm{~g} / \mathrm{mol} \mathrm{Li})+(1 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{~S})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=109.95 \mathrm{~g} / \mathrm{mol}^{2} \text { of } \mathrm{Li}_{2} \mathrm{SO}_{4}
$$

Moles of $\mathrm{Li}_{2} \mathrm{SO}_{4}=\left(6.2 \mathrm{~g} \mathrm{Li}_{2} \mathrm{SO}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{SO}_{4}}{109.95 \mathrm{~g} \mathrm{Li}_{2} \mathrm{SO}_{4}}\right)=0.056389=\mathbf{0 . 0 5 6} \mathbf{~ m o l ~ L i} \mathbf{L i}_{2} \mathbf{S O}_{4}$
FU of $\mathrm{Li}_{2} \mathrm{SO}_{4}=\left(0.056389 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{SO}_{4}\right)\left(\frac{6.022 \times 10^{23} \mathrm{FU}}{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{SO}_{4}}\right)=3.3957 \times 10^{22}=\mathbf{3 . 4 \times 1 0 ^ { 2 2 }} \mathbf{F U} \mathbf{L i}_{2} \mathbf{S O}_{4}$
d) Number of Li^{+}ions $=\left(3.3957 \times 10^{22} \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}\right)\left(\frac{2 \mathrm{Li}^{+} \text {ions }}{1 \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}}\right)=6.7914 \times 10^{22}=\mathbf{6 . 8 \times 1 0} \mathbf{}^{\mathbf{2 2}} \mathbf{L i}^{+}$ions Number of $\mathrm{SO}_{4}{ }^{2-}$ ions $=\left(3.3957 \times 10^{22} \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}\right)\left(\frac{1 \mathrm{SO}_{4}{ }^{2-} \text { ion }}{1 \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}}\right)=3.3957 \times 10^{22}=\mathbf{3 . 4} \mathbf{x 1 0}{ }^{\mathbf{2 2}} \mathbf{S O}_{4}{ }^{2-}$ ions
Number of S atoms $=\left(3.3957 \times 10^{22} \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}\right)\left(\frac{1 \mathrm{~S} \text { atom }}{1 \mathrm{FU} \mathrm{Li}{ }_{2} \mathrm{SO}_{4}}\right)=3.3957 \times 10^{22}=\mathbf{3 . 4 \times 1 0} \mathbf{}^{22} \mathbf{S}$ atoms
Number of O atoms $=\left(3.3957 \times 10^{22} \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}\right)\left(\frac{4 \mathrm{O} \text { atoms }}{1 \mathrm{FU} \mathrm{Li}_{2} \mathrm{SO}_{4}}\right)=1.3583 \times 10^{23}=\mathbf{1 . 4 \times 1 0 ^ { 2 3 }} \mathbf{O}$ atoms
3.17 Plan: Determine the formula and the molar mass of each compound. The formula gives the relative number of moles of each element present. Multiply the number of moles of each element by its molar mass to find the total mass of element in 1 mole of compound. Mass percent $=\frac{\text { total mass of element }}{\text { molar mass of compound }}(100)$.

Solution:

a) Ammonium bicarbonate is an ionic compound consisting of ammonium ions, $\mathrm{NH}_{4}{ }^{+}$and bicarbonate ions, $\mathrm{HCO}_{3}{ }^{-}$. The formula of the compound is $\mathrm{NH}_{4} \mathrm{HCO}_{3}$.
\boldsymbol{M} of $\mathrm{NH}_{4} \mathrm{HCO}_{3}=(1 \times \boldsymbol{M}$ of N$)+(5 \times \boldsymbol{\mathcal { M }}$ of H$)+(1 \times \boldsymbol{M}$ of C$)+(3 \times \boldsymbol{M}$ of O$)$

$$
\begin{aligned}
& =\left(1 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N}^{2}\right)+(5 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(1 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(3 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}) \\
& \left.=79.06 \mathrm{~g} / \mathrm{mol}_{\mathrm{of}}^{\mathrm{NH}}\right)_{4} \mathrm{HCO}_{3}
\end{aligned}
$$

There are 5 moles of H in 1 mole of $\mathrm{NH}_{4} \mathrm{HCO}_{3}$.
Mass (g) of $\mathrm{H}=(5 \mathrm{~mol} \mathrm{H})\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=5.040 \mathrm{~g} \mathrm{H}$
Mass percent $=\frac{\text { total mass } \mathrm{H}}{\text { molar mass of compound }}(100)=\frac{5.040 \mathrm{~g} \mathrm{H}}{79.06 \mathrm{~g} \mathrm{NH}_{4} \mathrm{HCO}_{3}}(100)=6.374905=\mathbf{6 . 3 7 5 \%} \mathbf{~ H}$
b) Sodium dihydrogen phosphate heptahydrate is a salt that consists of sodium ions, Na^{+}, dihydrogen phosphate ions, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, and seven waters of hydration. The formula is $\mathrm{NaH}_{2} \mathrm{PO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$. Note that the waters of hydration are included in the molar mass.

$$
\begin{aligned}
\boldsymbol{\mathcal { M }} \text { of } \mathrm{NaH}_{2} \mathrm{PO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O} & =(1 \times \boldsymbol{M} \text { of } \mathrm{Na})+(16 \times \boldsymbol{\mathcal { M }} \text { of } \mathrm{H})+(1 \times \boldsymbol{M} \text { of } \mathrm{P})+(11 \times \boldsymbol{M} \text { of O }) \\
& =(1 \times 22.99 \mathrm{~g} / \mathrm{mol} \mathrm{Na})+(16 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(1 \times 30.97 \mathrm{~g} / \mathrm{mol} \mathrm{P})+(11 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}) \\
& =246.09 \mathrm{~g} / \mathrm{mol} \mathrm{NaH}
\end{aligned}
$$

There are 11 moles of O in 1 mole of $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
Mass (g) of $\mathrm{O}=(11 \mathrm{~mol} \mathrm{O})\left(\frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}\right)=176.00 \mathrm{~g} \mathrm{O}$
Mass percent $=\frac{\text { total mass } \mathrm{O}}{\text { molar mass of compound }}(100)=\frac{176.00 \mathrm{~g} \mathrm{O}}{246.09 \mathrm{~g} \mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}}(100)$

$$
=71.51855=71.52 \% \mathbf{O}
$$

Plan: Determine the formula and the molar mass of each compound. The formula gives the relative number of moles of each element present. Multiply the number of moles of each element by its molar mass to find the total mass of element in 1 mole of compound. Mass percent $=\frac{\text { total mass of element }}{\text { molar mass of compound }}(100)$.

Solution:

a) Strontium periodate is an ionic compound consisting of strontium ions, Sr^{2+} and periodate ions, $\mathrm{IO}_{4}{ }^{-}$.

The formula of the compound is $\mathrm{Sr}\left(\mathrm{IO}_{4}\right)_{2}$.
\mathcal{M} of $\operatorname{Sr}\left(\mathrm{IO}_{4}\right)_{2}=(1 \times \boldsymbol{M}$ of Sr$)+(2 \times \mathcal{M}$ of I$)+(8 \times \boldsymbol{M}$ of O$)$

$$
=(1 \times 87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+(2 \times 126.9 \mathrm{~g} / \mathrm{mol} \mathrm{I})+(8 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})
$$

$$
=469.4 \mathrm{~g} / \mathrm{mol} \text { of } \mathrm{Sr}\left(\mathrm{IO}_{4}\right)_{2}
$$

There are 2 moles of I in 1 mole of $\operatorname{Sr}\left(\mathrm{IO}_{4}\right)_{2}$.

$$
\begin{aligned}
& \text { Mass }(\mathrm{g}) \text { of } \mathrm{I}=(2 \mathrm{~mol} \mathrm{I})\left(\frac{126.9 \mathrm{~g} \mathrm{I}}{1 \mathrm{~mol} \mathrm{I}}\right)=253.8 \mathrm{~g} \mathrm{I} \\
& \text { Mass percent }=\frac{\text { total mass I }}{\text { molar mass of compound }}(100)=\frac{253.8 \mathrm{~g} \mathrm{I}}{469.4 \mathrm{~g} \mathrm{Sr}\left(\mathrm{IO}_{4}\right)_{2}}(100)=54.0690=54.07 \% \mathrm{I}
\end{aligned}
$$

b) Potassium permanganate is an ionic compound consisting of potassium ions, K^{+}and permanganate ions, $\mathrm{MnO}_{4}{ }^{-}$. The formula of the compound is KMnO_{4}.
\boldsymbol{M} of $\mathrm{KMnO}_{4}=(1 \times \boldsymbol{\mathcal { M }}$ of K $)+(1 \times \boldsymbol{\mathcal { M }}$ of Mn$)+(4 \times \boldsymbol{M}$ of O$)$

$$
\begin{aligned}
& =(1 \times 39.10 \mathrm{~g} / \mathrm{mol} \mathrm{~K})+(1 \times 54.94 \mathrm{~g} / \mathrm{mol} \mathrm{Mn})+(4 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}) \\
& =158.04 \mathrm{~g} / \mathrm{mol} \mathrm{of} \mathrm{KMnO}_{4}
\end{aligned}
$$

There is 1 mole of Mn in 1 mole of KMnO_{4}.

$$
\begin{aligned}
& \text { Mass }(\mathrm{g}) \text { of } \mathrm{Mn}=(1 \mathrm{~mol} \mathrm{Mn})\left(\frac{54.94 \mathrm{~g} \mathrm{Mn}}{1 \mathrm{~mol} \mathrm{Mn}}\right)=54.94 \mathrm{~g} \mathrm{Mn} \\
& \text { Mass percent }=\frac{\text { total mass Mn }}{\text { molar mass of compound }}(100)=\frac{54.94 \mathrm{~g} \mathrm{Mn}}{158.04 \mathrm{~g} \mathrm{KMnO}_{4}}(100)=34.76335=\mathbf{3 4 . 7 6 \%} \mathbf{~ M n}
\end{aligned}
$$

Plan: Determine the formula of cisplatin from the figure, and then calculate the molar mass from the formula. Divide the mass given by the molar mass to find moles of cisplatin. Since 1 mole of cisplatin contains 6 moles of hydrogen atoms, multiply the moles given by 6 to obtain moles of hydrogen and then multiply by Avogadro's number to obtain the number of atoms.
Solution:
The formula for cisplatin is $\operatorname{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}$.
\boldsymbol{M} of $\operatorname{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}=(1 \times \boldsymbol{M}$ of Pt$)+(2 \times \boldsymbol{M}$ of Cl$)+(2 \times \boldsymbol{\mathcal { M }}$ of N$)+(6 \times \boldsymbol{M}$ of H$)$

$$
\begin{aligned}
& =(1 \times 195.1 \mathrm{~g} / \mathrm{mol} \mathrm{Pt})+(2 \times 35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl})+(2 \times 14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})+(6 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}) \\
& =300.1 \mathrm{~g} / \mathrm{mol} \text { of } \operatorname{Pt}(\mathrm{Cl})_{2}\left(\mathrm{NH}_{3}\right)_{2}
\end{aligned}
$$

a) Moles of cisplatin $=(285.3 \mathrm{~g}$ cisplatin $)\left(\frac{1 \mathrm{~mol} \text { cisplatin }}{300.1 \mathrm{~g} \text { cisplatin }}\right)=0.9506831=\mathbf{0 . 9 5 0 7} \mathbf{~ m o l}$ cisplatin
b) Moles of H atoms $=(0.98 \mathrm{~mol}$ cisplatin $)\left(\frac{6 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{cisplatin}}\right)=5.88 \mathrm{~mol} \mathrm{H}$ atoms

Number of H atoms $=(5.88 \mathrm{~mol} \mathrm{H}$ atoms $)\left(\frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \mathrm{~mol} \mathrm{H} \text { atoms }}\right)=3.540936 \times 10^{24}=\mathbf{3 . 5 \times 1 0 ^ { 2 4 }} \mathbf{H}$ atoms

Plan: Determine the molar mass of propane. Divide the given mass by the molar mass to find the moles. Since each mole of propane contains 3 moles of carbon, multiply the moles of propane by 3 to obtain moles of C atoms. Multiply the moles of C by its molar mass to obtain mass of carbon.
Solution:
a) The formula of propane is $\mathrm{C}_{3} \mathrm{H}_{8}$.
\mathcal{M} of $\mathrm{C}_{3} \mathrm{H}_{8}=(3 \mathrm{x} \boldsymbol{\mathcal { M }}$ of C$)+(8 \mathrm{x} \boldsymbol{\mathcal { M }}$ of H$)=(3 \mathrm{x} 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(8 \mathrm{x} 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})=44.09 \mathrm{~g} / \mathrm{mol}$
Moles of $\mathrm{C}_{3} \mathrm{H}_{8}=\left(85.5 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}\right)=1.939215=\mathbf{1 . 9 4} \mathbf{~ m o l ~ C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}$
b) Moles of $\mathrm{C}=\left(1.939215 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}\right)\left(\frac{3 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}\right)=5.817645 \mathrm{~mol} \mathrm{C}$

Mass (g) of $C=(5.817645 \mathrm{~mol} \mathrm{C})\left(\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)=69.86992=\mathbf{6 9 . 9} \mathbf{g ~ C}$
3.21 Plan: Determine the formula and the molar mass of each compound. The formula gives the relative number of moles of nitrogen present. Multiply the number of moles of nitrogen by its molar mass to find the total mass of nitrogen in 1 mole of compound. Divide the total mass of nitrogen by the molar mass of compound and multiply by 100 to determine mass percent. Mass percent $=\frac{(\operatorname{mol~N}) \times(\text { molar mass } \mathrm{N})}{\text { molar mass of compound }}(100)$. Then rank the values in order of decreasing mass percent N .

Solution:

$$
\begin{aligned}
& \begin{array}{llr}
\text { Name } & \text { Formula } & \text { Molar Mass (g/mol) } \\
\hline \text { Potassium nitrate } & \mathrm{KNO}_{3} & 101.11 \\
\text { Ammonium nitrate } & \mathrm{NH}_{4} \mathrm{NO}_{3} & 80.05 \\
\text { Ammonium sulfate } & \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} & 132.15 \\
\text { Urea } & \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2} & 60.06
\end{array} \\
& \text { Mass \% N in potassium nitrate }=\frac{(1 \mathrm{~mol} \mathrm{~N})(14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})}{101.11 \mathrm{~g} / \mathrm{mol}} \times 100=13.856196=\mathbf{1 3 . 8 6 \%} \mathbf{N} \\
& \text { Mass \% N in ammonium nitrate }=\frac{(2 \mathrm{~mol} \mathrm{~N})(14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})}{80.05 \mathrm{~g} / \mathrm{mol}} \times 100=35.003123=\mathbf{3 5 . 0 0 \%} \mathbf{N} \\
& \text { Mass \% N in ammonium sulfate }=\frac{(2 \mathrm{~mol} \mathrm{~N})(14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})}{132.15 \mathrm{~g} / \mathrm{mol}} \times 100=21.20318=\mathbf{2 1 . 2 0 \%} \mathbf{N} \\
& \text { Mass \% N in urea }=\frac{(2 \mathrm{~mol} \mathrm{~N})(14.01 \mathrm{~g} / \mathrm{mol} \mathrm{~N})}{60.06 \mathrm{~g} / \mathrm{mol}} \times 100=46.6533=46.65 \% \mathrm{~N} \\
& \text { Rank is } \mathbf{C O}\left(\mathbf{N H}_{2}\right)_{2}>\mathbf{N H}_{4} \mathbf{N O}_{3}>\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S O}_{4}>\mathbf{K N O}_{3}
\end{aligned}
$$

3.22 Plan: The volume must be converted from cubic feet to cubic centimeters. The volume and the density will give the mass of galena which is then divided by molar mass to obtain moles. Part b) requires a conversion from cubic decimeters to cubic centimeters. The density allows a change from volume in cubic centimeters to mass which is then divided by the molar mass to obtain moles; the amount in moles is multiplied by Avogadro's number to obtain formula units of PbS which is also the number of Pb atoms due to the $1: 1 \mathrm{PbS}: \mathrm{Pb}$ mole ratio. Solution:
Lead(II) sulfide is composed of Pb^{2+} and S^{2-} ions and has a formula of PbS .
\mathcal{M} of $\mathrm{PbS}=(1 \times \mathcal{M}$ of Pb$)+(1 \times \mathcal{M}$ of S$)=(1 \times 207.2 \mathrm{~g} / \mathrm{mol} \mathrm{Pb})+(1 \times 32.07 \mathrm{~g} / \mathrm{mol} \mathrm{S})=239.3 \mathrm{~g} / \mathrm{mol}$
a) Volume $\left(\mathrm{cm}^{3}\right)=\left(1.00 \mathrm{ft}^{3} \mathrm{PbS}\right)\left(\frac{(12 \mathrm{in})^{3}}{(1 \mathrm{ft})^{3}}\right)\left(\frac{(2.54 \mathrm{~cm})^{3}}{(1 \mathrm{in})^{3}}\right)=28316.85 \mathrm{~cm}^{3}$

Mass (g) of PbS $=\left(28316.85 \mathrm{~cm}^{3} \mathrm{PbS}\right)\left(\frac{7.46 \mathrm{~g} \mathrm{PbS}}{1 \mathrm{~cm}^{3}}\right)=211243.7 \mathrm{~g} \mathrm{PbS}$
Moles of $\mathrm{PbS}=(211243.7 \mathrm{~g} \mathrm{PbS})\left(\frac{1 \mathrm{~mol} \mathrm{PbS}}{239.3 \mathrm{~g} \mathrm{PbS}}\right)=882.7568=\mathbf{8 8 3} \mathbf{~ m o l ~ P b S}$
b) Volume $\left(\mathrm{cm}^{3}\right)=\left(1.00 \mathrm{dm}^{3} \mathrm{PbS}\right)\left(\frac{(0.1 \mathrm{~m})^{3}}{(1 \mathrm{dm})^{3}}\right)\left(\frac{(1 \mathrm{~cm})^{3}}{\left(10^{-2} \mathrm{~m}\right)^{3}}\right)=1.00 \times 10^{3} \mathrm{~cm}^{3}$

Mass (g) of $\mathrm{PbS}=\left(1.00 \times 10^{3} \mathrm{~cm}^{3} \mathrm{PbS}\right)\left(\frac{7.46 \mathrm{~g} \mathrm{PbS}}{1 \mathrm{~cm}^{3}}\right)=7460 \mathrm{~g} \mathrm{PbS}$
Moles of $\mathrm{PbS}=(7460 \mathrm{~g} \mathrm{PbS})\left(\frac{1 \mathrm{~mol} \mathrm{PbS}}{239.3 \mathrm{~g} \mathrm{PbS}}\right)=31.17426 \mathrm{~mol} \mathrm{PbS}$
Moles of $\mathrm{Pb}=(31.17426 \mathrm{~mol} \mathrm{PbS})\left(\frac{1 \mathrm{~mol} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{PbS}}\right)=31.17426 \mathrm{~mol} \mathrm{~Pb}$

Number of lead atoms $=$
$(31.17426 \mathrm{~mol} \mathrm{~Pb})\left(\frac{6.022 \times 10^{23} \mathrm{~Pb} \text { atoms }}{1 \mathrm{~mol} \mathrm{~Pb}}\right)=1.87731 \times 10^{25}=\mathbf{1 . 8 8 \times 1 0 ^ { 2 5 }} \mathbf{P b}$ atoms

Plan: If the molecular formula for hemoglobin (Hb) were known, the number of Fe^{2+} ions in a molecule of hemoglobin could be calculated. It is possible to calculate the mass of iron from the percentage of iron and the molar mass of the compound. Assuming you have 1 mole of hemoglobin, take 0.33% of its molar mass as the mass of Fe in that 1 mole. Divide the mass of Fe by its molar mass to find moles of Fe in 1 mole of hemoglobin which is also the number of ions in 1 molecule.
Solution:
Mass of $\mathrm{Fe}=\left(\frac{0.33 \% \mathrm{Fe}}{100 \% \mathrm{Hb}}\right)\left(\frac{6.8 \times 10^{4} \mathrm{~g}}{\mathrm{~mol}}\right)=224.4 \mathrm{~g} \mathrm{Fe}$
Moles of $\mathrm{Fe}=(224.4 \mathrm{~g} \mathrm{Fe})\left(\frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}}\right)=4.0179=4.0 \mathrm{~mol} \mathrm{Fe}^{2+} / \mathrm{mol} \mathrm{Hb}$
Thus, there are $\mathbf{4} \mathbf{F e}^{2+} /$ molecule $\mathbf{H b}$.
Plan: Remember that the molecular formula tells the actual number of moles of each element in one mole of compound.
Solution:
a) No, this information does not allow you to obtain the molecular formula. You can obtain the empirical formula from the number of moles of each type of atom in a compound, but not the molecular formula.
b) Yes, you can obtain the molecular formula from the mass percentages and the total number of atoms. Plan:

1) Assume a 100.0 g sample and convert masses (from the mass \% of each element) to moles using molar mass.
2) Identify the element with the lowest number of moles and use this number to divide into the number of moles for each element. You now have at least one elemental mole ratio (the one with the smallest number of moles) equal to 1.00 and the remaining mole ratios that are larger than one.
3) Examine the numbers to determine if they are whole numbers. If not, multiply each number by a whole-number factor to get whole numbers for each element. You will have to use some judgment to decide when to round. Write the empirical formula using these whole numbers.
4) Check the total number of atoms in the empirical formula. If it equals the total number of atoms given then the empirical formula is also the molecular formula. If not, then divide the total number of atoms given by the total number of atoms in the empirical formula. This should give a whole number.
Multiply the number of atoms of each element in the empirical formula by this whole number to get the molecular formula. If you do not get a whole number when you divide, return to step 3 and revise how you multiplied and rounded to get whole numbers for each element.
Roadmap:

Mass (g) of each element (express mass percent directly as grams)
Divide by $\boldsymbol{\mathcal { M }}(\mathrm{g} / \mathrm{mol})$
Amount (mol) of each element
Use numbers of moles as subscripts
Preliminary empirical formula
Change to integer subscripts

Empirical formula

Divide total number of atoms in molecule by the number of atoms in the empirical formula and multiply the empirical formula by that factor

Molecular formula
c) Yes, you can determine the molecular formula from the mass percent and the number of atoms of one element in a compound. Plan:

1) Follow steps $1-3$ in part b).
2) Compare the number of atoms given for the one element to the number in the empirical formula. Determine the factor the number in the empirical formula must be multiplied by to obtain the given number of atoms for that element. Multiply the empirical formula by this number to get the molecular formula.
Roadmap:
(Same first three steps as in b).

Empirical formula

Divide the number of atoms of the one element in the molecule by the number of atoms
of that element in the empirical formula and multiply the empirical formula by that factor
Molecular formula
d) No, the mass \% will only lead to the empirical formula.
e) Yes, a structural formula shows all the atoms in the compound. Plan: Count the number of atoms of each type of element and record as the number for the molecular formula.
Roadmap:

Structural formula
Count the number of atoms of each element and use these numbers as subscripts
Molecular formula

3.25 Plan: Examine the number of atoms of each type in the compound. Divide all atom numbers by the common factor that results in the lowest whole-number values. Add the molar masses of the atoms to obtain the empirical formula mass.
Solution:
a) $\mathrm{C}_{2} \mathrm{H}_{4}$ has a ratio of 2 carbon atoms to 4 hydrogen atoms, or $2: 4$. This ratio can be reduced to $1: 2$, so that the empirical formula is $\mathbf{C H}_{2}$. The empirical formula mass is $12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+2(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})=\mathbf{1 4 . 0 3} \mathbf{g} / \mathbf{m o l}$.
b) The ratio of atoms is $2: 6: 2$, or 1:3:1. The empirical formula is $\mathbf{C H}_{3} \mathbf{O}$ and its empirical formula mass is
$12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+3(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}=31.03 \mathrm{~g} / \mathrm{mol}$.
c) Since, the ratio of elements cannot be further reduced, the molecular formula and empirical formula are the same, $\mathbf{N}_{2} \mathbf{O}_{5}$. The formula mass is $2(14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N})+5(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=\mathbf{1 0 8 . 0 2} \mathbf{~ g} / \mathbf{m o l}$.
d) The ratio of elements is 3 atoms of barium to 2 atoms of phosphorus to 8 atoms of oxygen, or 3:2:8. This ratio cannot be further reduced, so the empirical formula is also $\mathbf{B a}_{3}\left(\mathbf{P O}_{4}\right)_{2}$, with a formula mass of $3(137.3 \mathrm{~g} / \mathrm{mol} \mathrm{Ba})+2(30.97 \mathrm{~g} / \mathrm{mol} \mathrm{P})+8(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=\mathbf{6 0 1 . 8} \mathbf{~ g} / \mathbf{m o l}$.
e) The ratio of atoms is $4: 16$, or $1: 4$. The empirical formula is $\mathbf{T e I}_{4}$, and the formula mass is $127.6 \mathrm{~g} / \mathrm{mol} \mathrm{Te}+4(126.9 \mathrm{~g} / \mathrm{mol} \mathrm{I})=\mathbf{6 3 5 . 2} \mathbf{g} / \mathrm{mol}$.

Plan: Examine the number of atoms of each type in the compound. Divide all atom numbers by the common factor that results in the lowest whole-number values. Add the molar masses of the atoms to obtain the empirical formula mass.
Solution:
a) $\mathrm{C}_{4} \mathrm{H}_{8}$ has a ratio of 4 carbon atoms to 8 hydrogen atoms, or $4: 8$. This ratio can be reduced to $1: 2$, so that the empirical formula is $\mathbf{C H}_{2}$. The empirical formula mass is $12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+2(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})=\mathbf{1 4 . 0 3} \mathbf{g} / \mathbf{m o l}$.
b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ has a ratio of atoms of 3:6:3, or 1:2:1. The empirical formula is $\mathbf{C H}_{2} \mathbf{O}$ and its empirical formula mass is $12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+2(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}=\mathbf{3 0 . 0 3} \mathbf{~ g} / \mathbf{m o l}$.
c) $\mathrm{P}_{4} \mathrm{O}_{10}$ has a ratio of 4 P atoms to 10 O atoms, or $4: 10$. This ratio can be reduced to $2: 5$, so that the empirical formula is $\mathbf{P}_{2} \mathbf{O}_{5}$. The empirical formula mass is $2(30.97 \mathrm{~g} / \mathrm{mol} \mathrm{P})+5(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=\mathbf{1 4 1 . 9 4} \mathbf{g} / \mathbf{m o l}$.
d) $\mathrm{Ga}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ has a ratio of 2 atoms of gallium to 3 atoms of sulfur to 12 atoms of oxygen, or 2:3:12. This ratio cannot be further reduced, so the empirical formula is also $\mathbf{G a}_{2}\left(\mathbf{S O}_{4}\right)_{3}$, with a formula mass of $2(69.72 \mathrm{~g} / \mathrm{mol} \mathrm{Ga})+3(32.07 \mathrm{~g} / \mathrm{mol} \mathrm{S})+12(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=427.6 \mathrm{~g} / \mathrm{mol}$.
e) $\mathrm{Al}_{2} \mathrm{Br}_{6}$ has a ratio of atoms of $2: 6$, or $1: 3$. The empirical formula is $\mathbf{A l B r}_{3}$, and the formula mass is $26.98 \mathrm{~g} / \mathrm{mol} \mathrm{Al}+3(79.90 \mathrm{~g} / \mathrm{mol} \mathrm{Br})=266.7 \mathrm{~g} / \mathbf{m o l}$.

Plan: Determine the molar mass of each empirical formula. The subscripts in the molecular formula are wholenumber multiples of the subscripts in the empirical formula. To find this whole number, divide the molar mass of the compound by its empirical formula mass. Multiply each subscript in the empirical formula by the whole number.
Solution:
Only approximate whole-number values are needed.
a) CH_{2} has empirical mass equal to $12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+2(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{C})=14.03 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{42.08 \mathrm{~g} / \mathrm{mol}}{14.03 \mathrm{~g} / \mathrm{mol}}\right)=3
$$

Multiplying the subscripts in CH_{2} by 3 gives $\mathbf{C}_{3} \mathbf{H}_{\mathbf{6}}$.
b) NH_{2} has empirical mass equal to $14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N}+2(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})=16.03 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{32.05 \mathrm{~g} / \mathrm{mol}}{16.03 \mathrm{~g} / \mathrm{mol}}\right)=2
$$

Multiplying the subscripts in NH_{2} by 2 gives $\mathbf{N}_{2} \mathbf{H}_{4}$.
c) NO_{2} has empirical mass equal to $14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N}+2(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=46.01 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{92.02 \mathrm{~g} / \mathrm{mol}}{46.01 \mathrm{~g} / \mathrm{mol}}\right)=2
$$

Multiplying the subscripts in NO_{2} by 2 gives $\mathbf{N}_{2} \mathbf{O}_{4}$.
d) CHN has empirical mass equal to $12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}+14.01 \mathrm{~g} / \mathrm{mol} \mathrm{N}=27.03 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{135.14 \mathrm{~g} / \mathrm{mol}}{27.03 \mathrm{~g} / \mathrm{mol}}\right)=5
$$

Multiplying the subscripts in CHN by 5 gives $\mathbf{C}_{5} \mathbf{H}_{5} \mathbf{N}_{5}$.
Plan: Determine the molar mass of each empirical formula. The subscripts in the molecular formula are wholenumber multiples of the subscripts in the empirical formula. To find this whole number, divide the molar mass of the compound by its empirical formula mass. Multiply each subscript in the empirical formula by the whole number.
Solution:
Only approximate whole-number values are needed.
a) CH has empirical mass equal to $12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C}+1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H}=13.02 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{78.11 \mathrm{~g} / \mathrm{mol}}{13.02 \mathrm{~g} / \mathrm{mol}}\right)=6
$$

Multiplying the subscripts in CH by 6 gives $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}$.
b) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ has empirical mass equal to $3(12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+6(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+2(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=74.08 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{74.08 \mathrm{~g} / \mathrm{mol}}{74.08 \mathrm{~g} / \mathrm{mol}}\right)=1
$$

Multiplying the subscripts in $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ by 1 gives $\mathrm{C}_{3} \mathbf{H}_{6} \mathbf{O}_{2}$.
c) HgCl has empirical mass equal to $200.6 \mathrm{~g} / \mathrm{mol} \mathrm{Hg}+35.45 \mathrm{~g} / \mathrm{mol} \mathrm{Cl}=236.0 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{472.1 \mathrm{~g} / \mathrm{mol}}{236.0 \mathrm{~g} / \mathrm{mol}}\right)=2
$$

Multiplying the subscripts in HgCl by 2 gives $\mathbf{H g}_{2} \mathbf{C l}_{2}$.
d) $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}$ has empirical mass equal to $7(12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+4(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+2(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=120.10 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{240.20 \mathrm{~g} / \mathrm{mol}}{120.10 \mathrm{~g} / \mathrm{mol}}\right)=2
$$

Multiplying the subscripts in $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}$ by 2 gives $\mathbf{C}_{\mathbf{1 4}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{4}}$.
Plan: The empirical formula is the smallest whole-number ratio of the atoms or moles in a formula. All data must be converted to moles of an element by dividing mass by the molar mass. Divide each mole number by the smallest mole number to convert the mole ratios to whole numbers.
Solution:
a) 0.063 mol Cl and 0.22 mol O : preliminary formula is $\mathrm{Cl}_{0.063} \mathrm{O}_{0.22}$

Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{Cl}_{\frac{0.063}{0.063}} \mathrm{O}_{\frac{0.22}{0.063}} \rightarrow \mathrm{Cl}_{1} \mathrm{O}_{3.5}
$$

The formula is $\mathrm{Cl}_{1} \mathrm{O}_{3.5}$, which in whole numbers (x 2) is $\mathrm{Cl}_{2} \mathbf{O}_{7}$.
b) Find moles of elements by dividing by molar mass:

$$
\begin{aligned}
& \text { Moles of } \mathrm{Si}=(2.45 \mathrm{~g} \mathrm{Si})\left(\frac{1 \mathrm{~mol} \mathrm{Si}}{28.09 \mathrm{~g} \mathrm{Si}}\right)=0.08722 \mathrm{~mol} \mathrm{Si} \\
& \text { Moles of } \mathrm{Cl}=(12.4 \mathrm{~g} \mathrm{Cl})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}\right)=0.349788 \mathrm{~mol} \mathrm{Cl}
\end{aligned}
$$

Preliminary formula is $\mathrm{Si}_{0.08722} \mathrm{Cl}_{0.349788}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{Si}_{\frac{0.08722}{0.08722}} \mathrm{Cl}_{\frac{0.349788}{0.349788}} \rightarrow \mathrm{Si}_{1} \mathrm{Cl}_{4}
$$

The empirical formula is $\mathbf{S i C l}_{4}$.
c) Assume a 100 g sample and convert the masses to moles by dividing by the molar mass:

$$
\begin{aligned}
& \text { Moles of } C=(100 \mathrm{~g})\left(\frac{27.3 \text { parts } \mathrm{C} \text { by mass }}{100 \text { parts by mass }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}\right)=2.2731 \mathrm{~mol} \mathrm{C} \\
& \text { Moles of } \mathrm{O}=(100 \mathrm{~g})\left(\frac{72.7 \text { parts O by mass }}{100 \text { parts by mass }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}\right)=4.5438 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Preliminary formula is $\mathrm{C}_{2.2731} \mathrm{O}_{4.5438}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{C}_{\frac{2.2731}{2.2731}} \mathrm{O}_{\frac{4.5438}{2.2731}} \rightarrow \mathrm{C}_{1} \mathrm{O}_{2}
$$

The empirical formula is $\mathbf{C O}_{2}$.
3.30 Plan: The empirical formula is the smallest whole-number ratio of the atoms or moles in a formula. All data must be converted to moles of an element by dividing mass by the molar mass. Divide each mole number by the smallest mole number to convert the mole ratios to whole numbers.
Solution:
a) 0.039 mol Fe and 0.052 mol O : preliminary formula is $\mathrm{Fe}_{0.039} \mathrm{O}_{0.052}$

Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{Fe}_{\frac{0.039}{0.039}} \mathrm{O}_{\frac{0.052}{0.039}} \rightarrow \mathrm{Fe}_{1} \mathrm{O}_{1.33}
$$

The formula is $\mathrm{Fe}_{1} \mathrm{O}_{1.33}$, which in whole numbers (x 3) is $\mathbf{F e}_{3} \mathbf{O}_{4}$.
b) Find moles of elements by dividing by molar mass:

$$
\begin{aligned}
& \text { Moles of } \mathrm{P}=(0.903 \mathrm{~g} \mathrm{P})\left(\frac{1 \mathrm{~mol} \mathrm{P}}{30.97 \mathrm{~g} \mathrm{P}}\right)=0.029157 \mathrm{~mol} \mathrm{P} \\
& \text { Moles of } \mathrm{Br}=(6.99 \mathrm{~g} \mathrm{Br})\left(\frac{1 \mathrm{~mol} \mathrm{Br}}{79.90 \mathrm{~g} \mathrm{Br}}\right)=0.087484 \mathrm{~mol} \mathrm{Br}
\end{aligned}
$$

Preliminary formula is $\mathrm{P}_{0.029157} \mathrm{Br}_{0.087484}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{P}_{\frac{0.029157}{0.029157}} \mathrm{Br}_{\frac{0.087484}{}}^{0.029157} \rightarrow \mathrm{P}_{1} \mathrm{Br}_{3}
$$

The empirical formula is $\mathbf{P B r}_{3}$.
c) Assume a 100 g sample and convert the masses to moles by dividing by the molar mass:

$$
79.9 \% \mathrm{C} \text { and } 100-79.9=20.1 \% \mathrm{H}
$$

Moles of $\mathrm{C}=(100 \mathrm{~g})\left(\frac{79.9 \text { parts } \mathrm{C} \text { by mass }}{100 \text { parts by mass }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}\right)=6.6528 \mathrm{~mol} \mathrm{C}$
Moles of $\mathrm{H}=(100 \mathrm{~g})\left(\frac{20.1 \text { parts } \mathrm{H} \text { by mass }}{100 \text { parts by mass }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}\right)=19.940 \mathrm{~mol} \mathrm{H}$
Preliminary formula is $\mathrm{C}_{6.6528} \mathrm{H}_{19.940}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\begin{aligned}
& \mathrm{C}_{\frac{6.6528}{6.6528}} \mathrm{H}_{\frac{19.940}{6.6528}} \rightarrow \mathrm{C}_{1} \mathrm{H}_{3} \\
& \text { The empirical formula is } \mathbf{C H}_{3} .
\end{aligned}
$$

3.31 Plan: The moles of the metal are known, and the moles of fluorine atoms may be found in part a) from the $\mathrm{M}: \mathrm{F}$ mole ratio in the compound formula. In part b), convert moles of F atoms to mass and subtract the mass of F from the mass of MF_{2} to find the mass of M . In part c), divide the mass of M by moles of M to determine the molar mass of M which can be used to identify the element.
Solution:
a) Determine the moles of fluorine.

Moles of $\mathrm{F}=(0.600 \mathrm{~mol} \mathrm{M})\left(\frac{2 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{M}}\right)=\mathbf{1 . 2 0} \mathbf{~ m o l ~ F}$
b) Determine the mass of M.

Mass of $F=(1.20 \mathrm{~mol} \mathrm{~F})\left(\frac{19.00 \mathrm{~g} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{~F}}\right)=22.8 \mathrm{~g} \mathrm{~F}$
Mass (g) of $\mathrm{M}=\mathrm{MF}_{2}(\mathrm{~g})-\mathrm{F}(\mathrm{g})=46.8 \mathrm{~g}-22.8 \mathrm{~g}=24.0 \mathrm{~g} \mathrm{M}$
c) The molar mass is needed to identify the element.

Molar mass of $\mathrm{M}=\frac{24.0 \mathrm{~g} \mathrm{M}}{0.600 \mathrm{~mol} \mathrm{M}}=40.0 \mathrm{~g} / \mathrm{mol}$
The metal with the closest molar mass to $40.0 \mathrm{~g} / \mathrm{mol}$ is calcium.
Plan: The moles of the metal oxide are known, and the moles of oxygen atoms may be found in part a) from the compound:oxygen mole ratio in the compound formula. In part b), convert moles of O atoms to mass and subtract the mass of O from the mass of $\mathrm{M}_{2} \mathrm{O}_{3}$ to find the mass of M . In part c), find moles of M from the compound: M mole ratio and divide the mass of M by moles of M to determine the molar mass of M which can be used to identify the element.
Solution:
a) Determine the moles of oxygen.

$$
\text { Moles of } \mathrm{O}=\left(0.370 \mathrm{~mol} \mathrm{M}_{2} \mathrm{O}_{3}\right)\left(\frac{3 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{M}_{2} \mathrm{O}_{3}}\right)=\mathbf{1 . 1 1} \mathbf{~ m o l ~ O}
$$

b) Determine the mass of M .

$$
\begin{aligned}
& \text { Mass of } \mathrm{O}=(1.11 \mathrm{~mol} \mathrm{O})\left(\frac{16.00 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}\right)=17.76 \mathrm{~g} \mathrm{O} \\
& \text { Mass }(\mathrm{g}) \text { of } \mathrm{M}=\mathrm{M}_{2} \mathrm{O}_{3}(\mathrm{~g})-\mathrm{O}(\mathrm{~g})=55.4 \mathrm{~g}(\mathrm{M}+\mathrm{O})-17.76=37.64=37.6 \mathbf{g ~ M} \\
& \text { c) First, the number of moles of } \mathrm{M} \text { must be calculated. }
\end{aligned}
$$

$$
\text { Moles } \mathrm{M}=\left(0.370 \mathrm{~mol} \mathrm{M}_{2} \mathrm{O}_{3}\right)\left(\frac{2 \mathrm{~mol} \mathrm{M}}{1 \mathrm{~mol} \mathrm{M}_{2} \mathrm{O}_{3}}\right)=0.740 \mathrm{~mol} \mathrm{M}
$$

The molar mass is needed to identify the element.

$$
\text { Molar mass of } \mathrm{M}=\frac{37.6 \mathrm{~g} \mathrm{M}}{0.740 \mathrm{~mol} \mathrm{M}}=50.86 \mathrm{~g} / \mathrm{mol}
$$

The metal with the closest molar mass to $50.9 \mathrm{~g} / \mathrm{mol}$ is vanadium.
3.33 Plan: The empirical formula is the smallest whole-number ratio of the atoms or moles in a formula. Assume 100 grams of cortisol so the percentages are numerically equivalent to the masses of each element. Convert each of the masses to moles by dividing by the molar mass of each element involved. Divide each mole number by the smallest mole number to convert the mole ratios to whole numbers. The subscripts in the molecular formula are whole-number multiples of the subscripts in the empirical formula. To find this whole number, divide the molar mass of the compound by its empirical formula mass. Multiply each subscript in the empirical formula by the whole number.
Solution:

$$
\begin{aligned}
& \text { Moles of } \mathrm{C}=(69.6 \mathrm{~g} \mathrm{C})\left(\frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}\right)=5.7952 \mathrm{~mol} \mathrm{C} \\
& \text { Moles of } \mathrm{H}=(8.34 \mathrm{~g} \mathrm{H})\left(\frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}\right)=8.2738 \mathrm{~mol} \mathrm{H} \\
& \text { Moles of } \mathrm{O}=(22.1 \mathrm{~g} \mathrm{O})\left(\frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}\right)=1.38125 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Preliminary formula is $\mathrm{C}_{5.7952} \mathrm{H}_{8.2738} \mathrm{O}_{1.38125}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{C}_{\frac{5.7952}{1.38125}} \mathrm{H}_{\frac{8.2738}{1.38125}} \mathrm{O}_{\frac{1.38125}{1.38125}} \rightarrow \mathrm{C}_{4.2} \mathrm{H}_{6} \mathrm{O}_{1}
$$

The carbon value is not close enough to a whole number to round the value. The smallest number that 4.20 may be multiplied by to get close to a whole number is 5 . (You may wish to prove this to yourself.) All three ratios need to be multiplied by five: $5\left(\mathrm{C}_{4.2} \mathrm{H}_{6} \mathrm{O}_{1}\right)=\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5}$.
The empirical formula mass is $=21(12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+30(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+5(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=362.45 \mathrm{~g} / \mathrm{mol}$

$$
\text { Whole-number multiple }=\frac{\text { molar mass of compound }}{\text { empirical formula mass }}=\left(\frac{362.47 \mathrm{~g} / \mathrm{mol}}{362.45 \mathrm{~g} / \mathrm{mol}}\right)=1
$$

The empirical formula mass and the molar mass given are the same, so the empirical and the molecular formulas are the same. The molecular formula is $\mathbf{C}_{21} \mathbf{H}_{30} \mathbf{O}_{5}$.

Plan: In combustion analysis, finding the moles of carbon and hydrogen is relatively simple because all of the carbon present in the sample is found in the carbon of CO_{2}, and all of the hydrogen present in the sample is found in the hydrogen of $\mathrm{H}_{2} \mathrm{O}$. Convert the mass of CO_{2} to moles and use the ratio between CO_{2} and C to find the moles and mass of C present. Do the same to find the moles and mass of H from $\mathrm{H}_{2} \mathrm{O}$. The moles of oxygen are more difficult to find, because additional O_{2} was added to cause the combustion reaction. Subtracting the masses of C and H from the mass of the sample gives the mass of O . Convert the mass of O to moles of O . Take the moles of C, H, and O and divide by the smallest value to convert to whole numbers to get the empirical formula.

Determine the empirical formula mass and compare it to the molar mass given in the problem to see how the empirical and molecular formulas are related. Finally, determine the molecular formula.
Solution:
Moles of $\mathrm{C}=\left(0.449 \mathrm{~g} \mathrm{CO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)=0.010202 \mathrm{~mol} \mathrm{C}$
Mass (g) of C $=(0.010202 \mathrm{~mol} \mathrm{C})\left(\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)=0.122526 \mathrm{~g} \mathrm{C}$
Moles of $\mathrm{H}=\left(0.184 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.020422 \mathrm{~mol} \mathrm{H}$
Mass (g) of $\mathrm{H}=(0.020422 \mathrm{~mol} \mathrm{H})\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=0.020585 \mathrm{~g} \mathrm{H}$
Mass (g) of $\mathrm{O}=$ Sample mass - (mass of $\mathrm{C}+$ mass of H)

$$
=0.1595 \mathrm{~g}-(0.122526 \mathrm{~g} \mathrm{C}+0.020585 \mathrm{~g} \mathrm{H})=0.016389 \mathrm{~g} \mathrm{O}
$$

Moles of $\mathrm{O}=(0.016389 \mathrm{~g} \mathrm{O})\left(\frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}\right)=0.0010243 \mathrm{~mol} \mathrm{O}$
Preliminary formula $=\mathrm{C}_{0.010202} \mathrm{H}_{0.020422} \mathrm{O}_{0.0010243}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{C}_{\frac{0.010202}{0.0010243}} \mathrm{H}_{\frac{0.020422}{0.0010243}} \mathrm{O}_{\frac{0.0010243}{0.0010243}} \rightarrow \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{1}
$$

Empirical formula $=\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$
Empirical formula mass $=10(12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+20(1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+1(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=156.26 \mathrm{~g} / \mathrm{mol}$
The empirical formula mass is the same as the given molar mass so the empirical and molecular formulas are the same. The molecular formula is $\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{2 0}} \mathbf{O}$.
3.35 Students I and II are incorrect. Both students changed a given formula. Only coefficients should be changed when balancing; subscripts cannot be changed. Student I failed to identify the product correctly, writing AlCl_{2} instead of AlCl_{3}. Student II used atomic chlorine instead of molecular chlorine as a reactant. Student III followed the correct process, changing only coefficients.

Plan: Examine the diagram and label each formula. We will use A for red atoms and B for green atoms.

Solution:

The reaction shows A_{2} and B_{2} diatomic molecules forming $A B$ molecules. Equal numbers of A_{2} and B_{2} combine to give twice as many molecules of AB . Thus, the reaction is $\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$. This is the balanced equation in \mathbf{b}.

Plan: Balancing is a trial-and-error procedure. Balance one element at a time, placing coefficients where needed to have the same number of atoms of a particular element on each side of the equation. The smallest whole-number coefficients should be used.
Solution:
a) __Cu(s) + _ $\mathrm{S}_{8}(s) \rightarrow \ldots \mathrm{Cu}_{2} \mathrm{~S}(s)$

Balance the S first, because there is an obvious deficiency of S on the right side of the equation. The 8 S atoms in S_{8} require the coefficient 8 in front of $\mathrm{Cu}_{2} \mathrm{~S}$:
$\ldots \mathrm{Cu}(\mathrm{s})+\ldots \mathrm{S}_{8}(\mathrm{~s}) \rightarrow \underline{8} \mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})$
Then balance the Cu . The 16 Cu atoms in $\mathrm{Cu}_{2} \mathrm{~S}$ require the coefficient 16 in front of Cu :
$16 \mathrm{Cu}(s)+\mathrm{S}_{8}(s) \rightarrow 8 \mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})$
b) $_\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \ldots \mathrm{H}_{3} \mathrm{PO}_{4}(l)$

Balance the P first, because there is an obvious deficiency of P on the right side of the equation. The 4 P atoms in $\mathrm{P}_{4} \mathrm{O}_{10}$ require a coefficient of 4 in front of $\mathrm{H}_{3} \mathrm{PO}_{4}$:
$\ldots \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \underset{4}{ } \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$
Balance the H next, because $\overline{\mathrm{H}}$ is present in only one reactant and only one product. The 12 H atoms in $4 \mathrm{H}_{3} \mathrm{PO}_{4}$ on the right require a coefficient of 6 in front of $\mathrm{H}_{2} \mathrm{O}$:
$\ldots \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+\underline{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \underline{4} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$

Balance the O last, because it appears in both reactants and is harder to balance. There are 16 O atoms on each side:
$\mathbf{P}_{4} \mathrm{O}_{\mathbf{1 0}}(\mathrm{s})+\mathbf{6} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{4} \mathbf{H}_{3} \mathrm{PO}_{4}(\mathrm{l})$
c) $\ldots \mathrm{B}_{2} \mathrm{O}_{3}(s)+\ldots \mathrm{NaOH}(a q) \rightarrow \ldots \mathrm{Na}_{3} \mathrm{BO}_{3}(a q)+\ldots \mathrm{H}_{2} \mathrm{O}(l)$

Balance oxygen last because it is present in more than one place on each side of the reaction. The 2 B atoms in $\mathrm{B}_{2} \mathrm{O}_{3}$ on the left require a coefficient of 2 in front of $\mathrm{Na}_{3} \mathrm{BO}_{3}$ on the right:
$\ldots \mathrm{B}_{2} \mathrm{O}_{3}(s)+\ldots \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{Na}_{3} \mathrm{BO}_{3}(a q)+\ldots \mathrm{H}_{2} \mathrm{O}(l)$
The 6 Na atoms in $2 \mathrm{Na}_{3} \mathrm{BO}_{3}$ on the right require a coefficient of 6 in front of NaOH on the left:
$\ldots \mathrm{B}_{2} \mathrm{O}_{3}(s)+\underline{6} \mathrm{NaOH}(a q) \rightarrow \underline{2} \mathrm{Na}_{3} \mathrm{BO}_{3}(a q)+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
The 6 H atoms in 6 NaOH on the left require a coefficent of 3 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\ldots \mathrm{B}_{2} \mathrm{O}_{3}(s)+\underline{6} \mathrm{NaOH}(a q) \rightarrow \underline{2} \mathrm{Na}_{3} \mathrm{BO}_{3}(a q)+\underline{3} \mathrm{H}_{2} \mathrm{O}(l)$
The oxygen is now balanced with 9 O atoms on each side:
$\mathrm{B}_{2} \mathrm{O}_{3}(s)+\mathbf{6 N a O H}(\mathrm{aq}) \rightarrow \mathbf{2} \mathrm{Na}_{3} \mathrm{BO}_{3}(\mathbf{a q})+\mathbf{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d) $_\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{N}_{2}(\mathrm{~g})$

There are 2 N atoms on the right in N_{2} so a coefficient of 2 is required in front of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ on the left:
$\underline{2} \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{N}_{2}(\mathrm{~g})$
There are now 10 H atoms in $2 \mathrm{CH}_{3} \mathrm{NH}_{2}$ on the left so a coefficient of 5 is required in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\underline{2} \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\underline{5} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{N}_{2}(\mathrm{~g})$
The 2 C atoms on the left require a coefficient of 2 in front of CO_{2} on the right:
$\underset{2}{2} \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{CO}_{2}(\mathrm{~g})+\underline{5} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{N}_{2}(\mathrm{~g})$
The 9 O atoms on the right (4 O atoms in $2 \mathrm{CO}_{2}$ plus 5 in $5 \mathrm{H}_{2} \mathrm{O}$) require a coefficient of $9 / 2$ in front of O_{2} on the left:
$\underline{2} \mathrm{CH}_{3} \mathrm{NH}_{2}(g)+\underline{9 / 2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{CO}_{2}(\mathrm{~g})+\underline{5} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{N}_{2}(\mathrm{~g})$
Multiply all coefficients by 2 to obtain whole numbers:
$4 \mathrm{CH}_{3} \mathrm{NH}_{2}(g)+9 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{~N}_{2}(g)$
3.38 Plan: Balancing is a trial-and-error procedure. Balance one element at a time, placing coefficients where needed to have the same number of atoms of a particular element on each side of the equation. The smallest wholenumber coefficients should be used.
Solution:
a) $\ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\ldots \mathrm{KOH}(a q) \rightarrow \ldots \mathrm{Cu}(\mathrm{OH})_{2}(s)+\ldots \mathrm{KNO}_{3}(a q)$

The 2 N atoms in $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ on the left require a coefficient of 2 in front of KNO_{3} on the right:
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\ldots \mathrm{KOH}(a q) \rightarrow \ldots \mathrm{Cu}(\mathrm{OH})_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
The 2 K atoms in $2 \mathrm{KNO}_{3}$ on the right require a coefficient of 2 in front of KOH on the left:
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\underline{2} \mathrm{KOH}(a q) \rightarrow \ldots \mathrm{Cu}(\mathrm{OH})_{2}(s)+\underline{2} \mathrm{KNO}_{3}(a q)$
There are 8 O atoms and 2 H atoms on each side:
$\mathbf{C u}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KOH}(a q) \rightarrow \mathbf{C u}(\mathrm{OH})_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
b) $\ldots \mathrm{BCl}_{3}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{g})$

The 3 Cl atoms in BCl_{3} on the left require a coefficient of 3 in front of HCl on the right:
$\mathrm{BCl}_{3}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+\underline{3} \mathrm{HCl}(\mathrm{g})$
The 6 H atoms on the right (3 in $\mathrm{H}_{3} \mathrm{BO}_{3}$ and 3 in HCl) require a coefficient of 3 in front of $\mathrm{H}_{2} \mathrm{O}$ on the left:
$\ldots \mathrm{BCl}_{3}(\mathrm{~g})+\underline{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+\underline{3} \mathrm{HCl}(\mathrm{g})$
There are 3 O atoms and 1 B atom on each side:
$\mathrm{BCl}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{g})$
c) $\ldots \mathrm{CaSiO}_{3}(s)+\ldots \mathrm{HF}(g) \rightarrow \ldots \mathrm{SiF}_{4}(g)+\ldots \mathrm{CaF}_{2}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

The 6 F atoms on the right (4 in SiF_{4} and 2 in CaF_{2}) require a coefficient of 6 in front of HF on the left:
$\ldots \mathrm{CaSiO}_{3}(s)+\underline{6} \mathrm{HF}(g) \rightarrow \ldots \mathrm{SiF}_{4}(g)+\ldots \mathrm{CaF}_{2}(s)+\ldots \mathrm{H}_{2} \mathrm{O}(l)$
The 6 H atoms in 6HF on the left require a coefficient of 3 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\ldots \mathrm{CaSiO}_{3}(s)+\underline{6} \mathrm{HF}(g) \rightarrow \ldots \mathrm{SiF}_{4}(g)+\ldots \mathrm{CaF}_{2}(s)+\underline{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
There are 1 Ca atom, 1 Si atom, and 3 O atoms on each side:
$\mathrm{CaSiO}_{3}(\mathrm{~s})+\mathbf{6 H F}(\mathrm{g}) \rightarrow \mathrm{SiF}_{4}(\mathrm{~g})+\mathrm{CaF}_{2}(\mathrm{~s})+\mathbf{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d) __ $(\mathrm{CN})_{2}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \ldots \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+\ldots \mathrm{NH}_{3}(g)$

The 2 N atoms in $(\mathrm{CN})_{2}$ on the left requires a coefficient of 2 in front of NH_{3} on the left:
$\ldots(\mathrm{CN})_{2}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+\underline{2} \mathrm{NH}_{3}(g)$

The 4 O atoms in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ on the right requires a coefficient of 4 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\ldots(\mathrm{CN})_{2}(g)+\underline{4} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+\underline{2} \mathrm{NH}_{3}(\mathrm{~g})$
There are 2 C atoms and 8 H atoms on each side:
$(\mathrm{CN})_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+2 \mathrm{NH}_{3}(\mathrm{~g})$
Plan: The names must first be converted to chemical formulas. Balancing is a trial-and-error procedure. Balance one element at a time, placing coefficients where needed to have the same number of atoms of a particular element on each side of the equation. The smallest whole-number coefficients should be used.
Remember that oxygen is diatomic.
Solution:
a) Gallium (a solid) and oxygen (a gas) are reactants and solid gallium(III) oxide is the only product:
$\ldots \mathrm{Ga}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{Ga}_{2} \mathrm{O}_{3}(\mathrm{~s})$
A coefficient of 2 in front of Ga on the left is needed to balance the 2 Ga atoms in $\mathrm{Ga}_{2} \mathrm{O}_{3}$:
$\underline{2} \mathrm{Ga}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{Ga}_{2} \mathrm{O}_{3}(\mathrm{~s})$
The 3 O atoms in $\mathrm{Ga}_{2} \mathrm{O}_{3}$ on the right require a coefficient of $3 / 2$ in front of O_{2} on the left:
$\underline{2} \mathrm{Ga}(\mathrm{s})+\underline{3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow}$ __ $_{\mathrm{Ga}}^{2}$ O $\mathrm{O}_{3}(\mathrm{~s})$
Multiply all coefficients by 2 to obtain whole numbers:
$\mathbf{4 G a}(\mathrm{s})+\mathbf{3 O _ { 2 }}(\mathrm{g}) \rightarrow \mathbf{2 G a _ { 2 }} \mathrm{O}_{3}(\mathrm{~s})$
b) Liquid hexane and oxygen gas are the reactants while carbon dioxide gas and gaseous water are the products:
$\mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 6 C atoms in $\mathrm{C}_{6} \mathrm{H}_{14}$ on the left require a coefficient of 6 in front of CO_{2} on the right:
$\ldots \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{6} \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 14 H atoms in $\mathrm{C}_{6} \mathrm{H}_{14}$ on the left require a coefficient of 7 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\ldots \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{6} \mathrm{CO}_{2}(\mathrm{~g})+\underset{7}{7} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 19 O atoms on the right (12 in $6 \mathrm{CO}_{2}$ and 7 in $7 \mathrm{H}_{2} \mathrm{O}$) require a coefficient of $19 / 2$ in front of O_{2} on the left:
Multiply all coefficients by 2 to obtain whole numbers:
$2 \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{I})+\mathbf{1 9 O _ { 2 }}(\mathrm{g}) \rightarrow \mathbf{1 2 \mathrm { CO } _ { 2 }}(\mathrm{g})+\mathbf{1 4} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c) Aqueous solutions of calcium chloride and sodium phosphate are the reactants; solid calcium phosphate and an aqueous solution of sodium chloride are the products:
$\ldots \mathrm{CaCl}_{2}(a q)+\ldots \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\ldots \mathrm{NaCl}(a q)$
The 3 Ca atoms in $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ on the right require a coefficient of 3 in front of CaCl_{2} on the left:
$\underline{3} \mathrm{CaCl}_{2}(a q)+\ldots \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\ldots \mathrm{NaCl}(a q)$
The 6 Cl atoms in $3 \mathrm{CaCl}_{2}$ on the left require a coefficient of 6 in front of NaCl on the right:
$\underline{3} \mathrm{CaCl}_{2}(a q)+\ldots \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\underline{6} \mathrm{NaCl}(a q)$
The 6 Na atoms in 6 NaCl on the right require a coefficient of 2 in front of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ on the left:
$\underline{3} \mathrm{CaCl}_{2}(a q)+\underline{2} \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\underline{6} \mathrm{NaCl}(a q)$
There are now 2 P atoms on each side:
$3 \mathrm{CaCl}_{2}(a q)+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{NaCl}(a q)$
3.40 Plan: The names must first be converted to chemical formulas. Balancing is a trial-and-error procedure. Balance one element at a time, placing coefficients where needed to have the same number of atoms of a particular element on each side of the equation. The smallest whole-number coefficients should be used.
Remember that oxygen is diatomic.
Solution:
a) Aqueous solutions of lead(II) nitrate and potassium iodide are the reactants; solid lead(II) iodide and an aqueous solution of potassium nitrate are the products:
$\ldots \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\ldots \mathrm{KI}(a q) \rightarrow \ldots \mathrm{PbI}_{2}(s)+\ldots \mathrm{KNO}_{3}(a q)$
There are 2 N atoms in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ on the left so a coefficient of 2 is required in front of KNO_{3} on the right:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\ldots \mathrm{KI}(a q) \rightarrow \ldots \mathrm{PbI}_{2}(s)+\underline{2} \mathrm{KNO}_{3}(a q)$
The 2 K atoms in $2 \mathrm{KNO}_{3}$ and the 2 I atoms in PbI_{2} on the right require a coefficient of 2 in front of KI on the left:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KI}(a q) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
There are now 6 O atoms on each side:
$\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KI}(a q) \rightarrow \mathrm{PbI}_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
b) Liquid disilicon hexachloride and water are the reactants and solid silicon dioxide, hydrogen chloride gas and hydrogen gas are the products:
$\mathrm{Si}_{2} \mathrm{Cl}_{6}(\mathrm{l})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{SiO}_{2}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{g})+\ldots \mathrm{H}_{2}(\mathrm{~g})$
The 2 Si atoms in $\mathrm{Si}_{2} \mathrm{Cl}_{6}$ on the left require a coefficient of 2 in front of SiO_{2} on the right:
$\ldots \mathrm{Si}_{2} \mathrm{Cl}_{6}(\mathrm{l})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \underline{2} \mathrm{SiO}_{2}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{g})+\ldots \mathrm{H}_{2}(\mathrm{~g})$
The 6 Cl atoms in $\mathrm{Si}_{2} \mathrm{Cl}_{6}$ on the left require a coefficient of 6 in front of HCl on the right:
$\ldots \mathrm{Si}_{2} \mathrm{Cl}_{6}(l)+\ldots \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \underline{2} \mathrm{SiO}_{2}(s)+\underline{6} \mathrm{HCl}(g)+\ldots \mathrm{H}_{2}(g)$
The 4 O atoms in $2 \mathrm{SiO}_{2}$ on the right require a coefficient of 4 in front of $\mathrm{H}_{2} \mathrm{O}$ on the left.
$\ldots \mathrm{Si}_{2} \mathrm{Cl}_{6}(\mathrm{l})+\underline{4} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \underline{2} \mathrm{SiO}_{2}(\mathrm{~s})+\underline{6} \mathrm{HCl}(\mathrm{g})+\ldots \mathrm{H}_{2}(\mathrm{~g})$
There are 8 H atoms in $4 \mathrm{H}_{2} \mathrm{O}$ on the left; there are 8 H atoms on the right (6 in 6 HCl and 2 in H_{2}):
$\mathrm{Si}_{2} \mathrm{Cl}_{\mathbf{6}}(\mathrm{I})+\mathbf{4} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{2 \mathrm { SiO } _ { 2 }}(\mathrm{s})+\mathbf{6 H C l}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
c) Nitrogen dioxide and water are the reactants and an aqueous solution of nitric acid and nitrogen monoxide gas are the products:
$\mathrm{NO}_{2}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{HNO}_{3}(a q)+\ldots \mathrm{NO}(\mathrm{g})$
Start with hydrogen it occurs in only one reactant and one product:
The 2 H atoms in $\mathrm{H}_{2} \mathrm{O}$ on the left require a coefficient of 2 in front of HNO_{3} on the right:
$\ldots \mathrm{NO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \underline{2} \mathrm{HNO}_{3}(\mathrm{aq})+\ldots \mathrm{NO}(\mathrm{g})$
The 3 N atoms on the right (2 in $2 \mathrm{HNO}_{3}$ and 1 in NO) require a coefficient of 3 in front of NO_{2} on the left;
$\underline{3} \mathrm{NO}_{2}(g)+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \underline{2} \mathrm{HNO}_{3}(a q)+\ldots \mathrm{NO}(g)$
There are now 7 O atoms on each side:
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
Plan: Write a balanced chemical reaction to obtain the mole ratio between the reactants. Compare the number of particles of each reactant with the mole ratio to find the limiting reactant. Use the limiting reactant to calculate the number of product molecules that will form.
Solution:
a) The reaction is $A_{2}+B_{2} \rightarrow \mathrm{AB}_{3}$ or $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightarrow 2 \mathrm{AB}_{3}$. The mole ratio between A_{2} and B_{2} is 1:3. Three times as many B_{2} molecules are required as you have of A_{2} molecules. With $3 A_{2}$ molecules present, $3 \times 3=9$ B_{2} molecules would be required. Since you have only $6 B_{2}$ molecules, B_{2} is the limiting reagent.
b) The balanced equation shows that $2 \mathrm{AB}_{3}$ molecules are produced for every $3 \mathrm{~B}_{2}$ molecules that react. Use the $3: 2$ mole ratio between the limiting reactant, B_{2}, and AB_{3} :
Number of molecules of product $=\left(6 \mathrm{~B}_{2}\right.$ molecules $)\left(\frac{2 \mathrm{AB}_{3} \text { molecules }}{3 \mathrm{~B}_{2} \text { molecules }}\right)=\mathbf{4} \mathbf{A B}_{3}$ molecules
3.42 Plan: Convert the kilograms of oxygen to grams of oxygen and then moles of oxygen by dividing by its molar mass. Use the moles of oxygen and the mole ratio from the balanced chemical equation to determine the moles of KNO_{3} required. Multiply the moles of KNO_{3} by its molar mass to obtain the mass in grams.
Solution:
a) Mass (g) of $\mathrm{O}_{2}=\left(56.6 \mathrm{~kg} \mathrm{O}_{2}\right)\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=5.66 \times 10^{4} \mathrm{~g} \mathrm{O}_{2}$

Moles of $\mathrm{O}_{2}=\left(5.66 \times 10^{4} \mathrm{~g} \mathrm{O}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}}\right)=1.76875 \times 10^{3} \mathrm{~mol} \mathrm{O}_{2}$
Moles of $\mathrm{KNO}_{3}=\left(1.76875 \mathrm{~mol} \mathrm{O}_{2}\right)\left(\frac{4 \mathrm{~mol} \mathrm{KNO}_{3}}{5 \mathrm{~mol} \mathrm{O}_{2}}\right)=1415=\mathbf{1 . 4 2 \times 1 0 ^ { 3 }} \mathbf{m o l ~ K N O}_{3}$
b) Mass (g) of $\mathrm{KNO}_{3}=\left(1415 \mathrm{~mol} \mathrm{KNO}_{3}\right)\left(\frac{101.11 \mathrm{~g} \mathrm{KNO}_{3}}{1 \mathrm{~mol} \mathrm{KNO}} 33\right)=143070.65=\mathbf{1 . 4 3 \times 1 0} \mathbf{~} \mathbf{g ~ K N O} \mathbf{3}$

Combining all steps gives:
Mass (g) of $\mathrm{KNO}_{3}=\left(56.6 \mathrm{~kg} \mathrm{O}_{2}\right)\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}}\right)\left(\frac{4 \mathrm{~mol} \mathrm{KNO}_{3}}{5 \mathrm{~mol} \mathrm{O}_{2}}\right)\left(\frac{101.11 \mathrm{~g} \mathrm{KNO}_{3}}{1 \mathrm{~mol} \mathrm{KNO}_{3}}\right)$
$=143070.65=1.43 \times 10^{5} \mathrm{~g} \mathrm{KNO}_{3}$

Plan: Convert mass of $\mathrm{Cr}_{2} \mathrm{~S}_{3}$ to moles by dividing by its molar mass. Use the mole ratio between $\mathrm{Cr}_{2} \mathrm{~S}_{3}$ and $\mathrm{Cr}_{2} \mathrm{O}_{3}$ from the balanced chemical equation to determine the moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ required. Multiply the moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}$ by its molar mass to obtain the mass in grams.
Solution:
a) Moles of $\mathrm{Cr}_{2} \mathrm{~S}_{3}=\left(421 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{~S}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{~S}_{3}}{200.21 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{~S}_{3}}\right)=2.102792 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{~S}_{3}$

Moles of $\mathrm{Cr}_{2} \mathrm{O}_{3}=\left(2.102792 \mathrm{~mol} \mathrm{Cr} 2 \mathrm{~S}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{~S}_{3}}\right)=2.102792=\mathbf{2 . 1 0} \mathbf{~ m o l ~ C r} \mathbf{C r}_{2}$
b) Mass (g) of $\mathrm{Cr}_{2} \mathrm{O}_{3}=\left(2.102792 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{3}\right)\left(\frac{152.00 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{3}}\right)=319.624=\mathbf{3 . 2 0 \times 1 0} \mathbf{N ~ C r}_{2} \mathbf{O}_{3}$

Combining all steps gives:
Mass (g) of $\mathrm{Cr}_{2} \mathrm{O}_{3}=\left(421 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{~S}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{~S}_{3}}{200.21 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{~S}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{~S}_{3}}\right)\left(\frac{152.00 \mathrm{~g} \mathrm{Cr}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{3}}\right)$

$$
=319.624=3.20 \times 10^{2} \mathbf{g ~ C r}_{2} \mathrm{O}_{3}
$$

3.44 Plan: First, balance the equation. Convert the grams of diborane to moles of diborane by dividing by its molar mass. Use mole ratios from the balanced chemical equation to determine the moles of the products. Multiply the mole amount of each product by its molar mass to obtain mass in grams.

Solution:

The balanced equation is: $\mathrm{B}_{2} \mathrm{H}_{6}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g})$.
Moles of $\mathrm{B}_{2} \mathrm{H}_{6}=\left(43.82\right.$ g B $\left._{2} \mathrm{H}_{6}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}{27.67 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)=1.583665 \mathrm{~mol}_{2} \mathrm{H}_{6}$
Moles of $\mathrm{H}_{3} \mathrm{BO}_{3}=\left(1.583665 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)=3.16733 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}$
Mass (g) of $\mathrm{H}_{3} \mathrm{BO}_{3}=\left(3.16733 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}\right)\left(\frac{61.83 \mathrm{~g} \mathrm{H}_{3} \mathrm{BO}_{3}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}\right)=195.83597=\mathbf{1 9 5 . 8} \mathbf{g ~ H}_{3} \mathbf{B O}_{\mathbf{3}}$
Combining all steps gives:
Mass (g) of $\mathrm{H}_{3} \mathrm{BO}_{3}=\left(43.82 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}{27.67 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)\left(\frac{61.83 \mathrm{~g} \mathrm{H}_{3} \mathrm{BO}_{3}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}\right)$

$$
=195.83597=\mathbf{1 9 5 . 8} \mathbf{\mathbf { g ~ H } _ { 3 }} \mathbf{B O}_{3}
$$

Moles of $\mathrm{H}_{2}=\left(1.583665 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}\right)\left(\frac{6 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)=9.50199 \mathrm{~mol} \mathrm{H}_{2}$
Mass (g) of $\mathrm{H}_{2}=\left(9.50199 \mathrm{~mol} \mathrm{H}_{2}\right)\left(\frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=19.15901 \mathrm{~g} \mathrm{H}_{2}=19.16 \mathbf{g ~ H}_{\mathbf{2}}$
Combining all steps gives:
Mass (g) of $\mathrm{H}_{2}=\left(43.82 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}{27.67 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)\left(\frac{6 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)\left(\frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=19.15601=\mathbf{1 9 . 1 6 ~ g ~ H} \mathbf{2}$
3.45 Plan: First, balance the equation. Convert the grams of silver sulfide to moles of silver sulfide by dividing by its molar mass. Use mole ratios from the balanced chemical equation to determine the moles of the products.
Multiply the mole amount of each product by its molar mass to obtain mass in grams.
Solution:
First, balance the equation: $\mathrm{Ag}_{2} \mathrm{~S}(s)+2 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{AgCl}(s)+\mathrm{H}_{2} \mathrm{~S}(g)$

Moles of $\mathrm{Ag}_{2} \mathrm{~S}=\left(174 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ag}}{2} \mathrm{~S},\left(247.9 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S} ~\right)=0.7018959 \mathrm{~mol} \mathrm{Ag} 2 \mathrm{~S}\right.$
Moles of $\mathrm{AgCl}=\left(0.7018959{\mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}^{\mathrm{S}}\left(\frac{2 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}\right)=1.403792 \mathrm{~mol} \mathrm{AgCl}\right.$
$\operatorname{Mass}(\mathrm{g})$ of $\mathrm{AgCl}=\left(1.403792 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}\right)\left(\frac{143.4 \mathrm{~g} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{AgCl}}\right)=201.304=\mathbf{2 0 1} \mathbf{g ~ A g C l}$
Combining all steps gives:
Mass (g) AgCl $=\left(174 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}{247.9 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}\right)\left(\frac{143.4 \mathrm{~g} \mathrm{AgCl}}{1 \mathrm{~mol} \mathrm{AgCl}}\right)=201.304=201 \mathbf{g ~ A g C l}$
Moles of $\mathrm{H}_{2} \mathrm{~S}=\left(0.7018959 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}\right)=0.7018959 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$
Mass (g) of $\mathrm{H}_{2} \mathrm{~S}=0.7018959 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}\left(\frac{34.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}\right)=23.9276=\mathbf{2 3 . 9} \mathbf{g ~ H} \mathbf{H}_{2} \mathbf{S}$
Combining all steps gives:
Mass (g) of $\mathrm{H}_{2} \mathrm{~S}=174 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}\left(\frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}{247.9 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{~S}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{~S}}\right)\left(\frac{34.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}\right)=23.9276=23.9 \mathbf{g ~ H}_{2} \mathrm{~S}$
3.46 Plan: Write the balanced equation by first writing the formulas for the reactants and products. Convert the mass of phosphorus to moles by dividing by the molar mass, use the mole ratio between phosphorus and chlorine from the balanced chemical equation to obtain moles of chlorine, and finally divide the moles of chlorine by its molar mass to obtain amount in grams.
Solution:
Reactants: formula for phosphorus is given as P_{4} and formula for chlorine gas is Cl_{2} (chlorine occurs as a diatomic molecule). Product: formula for phosphorus pentachloride (the name indicates one phosphorus atom and five chlorine atoms) is PCl_{5}.
Equation: $\mathrm{P}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$
Balancing the equation: $\mathrm{P}_{4}+10 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{5}$
Moles of $\mathrm{P}_{4}=\left(455 \mathrm{~g} \mathrm{P}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{P}_{4}}{123.88 \mathrm{~g} \mathrm{P}_{4}}\right)=3.67291 \mathrm{~mol} \mathrm{P}_{4}$
Moles of $\mathrm{Cl}_{2}=\left(3.67291 \mathrm{~mol} \mathrm{P}_{4}\right)\left(\frac{10 \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{P}_{4}}\right)=36.7291 \mathrm{~mol} \mathrm{Cl}_{2}$
Mass (g) of $\mathrm{Cl}_{2}=\left(36.7291 \mathrm{~mol} \mathrm{Cl}_{2}\right)\left(\frac{70.90 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}\right)=2604.09=\mathbf{2 . 6 0 \times 1 0} \mathbf{3} \mathbf{g ~ C l}_{\mathbf{2}}$
Combining all steps gives:
Mass (g) of $\mathrm{Cl}_{2}=\left(455 \mathrm{~g} \mathrm{P}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{P}_{4}}{123.88 \mathrm{~g} \mathrm{P}_{4}}\right)\left(\frac{10 \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{P}_{4}}\right)\left(\frac{70.90 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}\right)=2604.09267=\mathbf{2 . 6 0 \times 1 0} \mathbf{g}^{\mathbf{g ~ C l}} \mathbf{2}_{2}$
3.47 Plan: Write the balanced equation by first writing the formulas for the reactants and products. Convert the mass of sulfur to moles by dividing by the molar mass, use the mole ratio between sulfur and fluorine from the balanced chemical equation to obtain moles of fluorine, and finally divide the moles of fluorine by its molar mass to obtain amount in grams.

Solution:

Reactants: formula for sulfur is given as S_{8} and formula for fluorine gas is F_{2} (fluorine occurs as a diatomic molecule). Product: formula for sulfur hexafluoride (the name indicates one sulfur atom and six fluoride atoms) is SCl_{6}.
Equation: $\mathrm{S}_{8}+\mathrm{F}_{2} \rightarrow \mathrm{SF}_{6}$

Balancing the equation: $\mathrm{S}_{8}(\mathrm{~s})+24 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{SF}_{6}(\mathrm{~s})$
Moles of $\mathrm{S}_{8}=\left(17.8 \mathrm{~g} \mathrm{~S}_{8}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{256.56 \mathrm{~g} \mathrm{~S}_{8}}\right)=0.0693795 \mathrm{~mol} \mathrm{~S}_{8}$
Moles of $\mathrm{F}_{2}=\left(0.0693795 \mathrm{~mol} \mathrm{~S}_{8}\right)\left(\frac{24 \mathrm{~mol} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~S}_{8}}\right)=1.665108 \mathrm{~mol} \mathrm{~F}_{2}$
Mass (g) of $\mathrm{F}_{2}=\left(1.665108 \mathrm{~mol} \mathrm{~F}_{2}\right)\left(\frac{38.00 \mathrm{~g} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~F}_{2}}\right)=63.274=\mathbf{6 3 . 3} \mathbf{g ~ \mathbf { F } _ { 2 }}$
Combining all steps gives:
Mass (g) of $\mathrm{F}_{2}=\left(17.8 \mathrm{~g} \mathrm{~S}_{8}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{256.56 \mathrm{~g} \mathrm{~S}_{8}}\right)\left(\frac{24 \mathrm{~mol} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~S}_{8}}\right)\left(\frac{38.00 \mathrm{~g} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~F}_{2}}\right)=63.27409=\mathbf{6 3 . 3} \mathbf{\mathbf { g ~ F } _ { 2 }}$
Plan: Convert the given mass of each reactant to moles by dividing by the molar mass of that reactant. Use the mole ratio from the balanced chemical equation to find the moles of CaO formed from each reactant, assuming an excess of the other reactant. The reactant that produces fewer moles of CaO is the limiting reactant. Convert the moles of CaO obtained from the limiting reactant to grams using the molar mass.

Solution:

$2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{s})$
a) Moles of $\mathrm{Ca}=(4.20 \mathrm{~g} \mathrm{Ca})\left(\frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{~g} \mathrm{Ca}}\right)=0.104790 \mathrm{~mol} \mathrm{Ca}$

Moles of CaO from $\mathrm{Ca}=(0.104790 \mathrm{~mol} \mathrm{Ca})\left(\frac{2 \mathrm{~mol} \mathrm{CaO}}{2 \mathrm{~mol} \mathrm{Ca}}\right)=0.104790=\mathbf{0 . 1 0 5} \mathbf{~ m o l ~ C a O}$
b) Moles of $\mathrm{O}_{2}=\left(2.80 \mathrm{~g} \mathrm{O}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}}\right)=0.0875 \mathrm{~mol} \mathrm{O}_{2}$

Moles of CaO from $\mathrm{O}_{2}=\left(0.0875 \mathrm{~mol} \mathrm{O}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{CaO}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=0.17500=\mathbf{0 . 1 7 5} \mathbf{~ m o l ~ C a O}$
c) Calcium is the limiting reactant since it will form less calcium oxide.
d) The mass of CaO formed is determined by the limiting reactant, Ca .

Mass (g) of $\mathrm{CaO}=(0.104790 \mathrm{~mol} \mathrm{CaO})\left(\frac{56.08 \mathrm{~g} \mathrm{CaO}}{1 \mathrm{~mol} \mathrm{CaO}}\right)=5.8766=5.88 \mathbf{g ~ C a O}$
Combining all steps gives:
Mass (g) of $\mathrm{CaO}=(4.20 \mathrm{~g} \mathrm{Ca})\left(\frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{~g} \mathrm{Ca}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{CaO}}{2 \mathrm{~mol} \mathrm{Ca}}\right)\left(\frac{56.08 \mathrm{~g} \mathrm{CaO}}{1 \mathrm{~mol} \mathrm{CaO}}\right)=5.8766=5.88 \mathbf{g ~ C a O}$
Plan: Convert the given mass of each reactant to moles by dividing by the molar mass of that reactant. Use the mole ratio from the balanced chemical equation to find the moles of H_{2} formed from each reactant, assuming an excess of the other reactant. The reactant that produces fewer moles of H_{2} is the limiting reactant. Convert the moles of H_{2} obtained from the limiting reactant to grams using the molar mass.
Solution:
$\mathrm{SrH}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(g)$
a) Moles of $\mathrm{SrH}_{2}=\left(5.70 \mathrm{~g} \mathrm{SrH}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SrH}_{2}}{89.64 \mathrm{~g} \mathrm{SrH}_{2}}\right)=0.0635877 \mathrm{~mol} \mathrm{SrH}_{2}$

Moles of H_{2} from $\mathrm{SrH}_{2}=\left(0.0635877 \mathrm{~mol} \mathrm{SrH}_{2}\right)\left(\frac{2 \mathrm{molH}_{2}}{1 \mathrm{~mol} \mathrm{SrH}_{2}}\right)=0.127175=\mathbf{0 . 1 2 7} \mathbf{~ m o l ~ H} \mathbf{2}_{2}$
b) Mass (g) of $\mathrm{H}_{2} \mathrm{O}=\left(4.75 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=0.263596 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Moles of H_{2} from $\mathrm{H}_{2} \mathrm{O}=\left(0.263596 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.263596=\mathbf{0 . 2 6 4} \mathbf{~ m o l ~} \mathbf{H}_{2}$
c) SrH_{2} is the limiting reagent since it will yield fewer moles of hydrogen gas.
d) The mass of H_{2} formed is determined by the limiting reactant, SrH_{2}.

Mass (g) of $\mathrm{H}_{2}=\left(0.127175 \mathrm{~mol} \mathrm{H}_{2}\right)\left(\frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=0.256385=\mathbf{0 . 2 5 6} \mathbf{g ~ H} \mathbf{H}_{2}$
Combining all steps gives:
Mass (g) of $\mathrm{H}_{2}=\left(5.70 \mathrm{~g} \mathrm{SrH}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SrH}_{2}}{89.64 \mathrm{~g} \mathrm{SrH}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{SrH}_{2}}\right)\left(\frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=0.256385=\mathbf{0 . 2 5 6} \mathbf{g ~ H}_{2}$
3.50 Plan: First, balance the chemical equation. To determine which reactant is limiting, calculate the amount of HIO_{3} formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of HIO_{3} formed and the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.
Solution:
The balanced chemical equation for this reaction is:

$$
2 \mathrm{ICl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ICl}+\mathrm{HIO}_{3}+5 \mathrm{HCl}
$$

Hint: Balance the equation by starting with oxygen. The other elements are in multiple reactants and/or products and are harder to balance initially.
Finding the moles of HIO_{3} from the moles of ICl_{3} (if $\mathrm{H}_{2} \mathrm{O}$ is limiting):
Moles of $\mathrm{ICl}_{3}=\left(635 \mathrm{~g} \mathrm{ICl}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{ICl}_{3}}{233.2 \mathrm{~g} \mathrm{ICl}_{3}}\right)=2.722985 \mathrm{~mol} \mathrm{ICl}_{3}$
Moles of HIO_{3} from $\mathrm{ICl}_{3}=\left(2.722985 \mathrm{~mol} \mathrm{ICl}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HIO}_{3}}{2 \mathrm{~mol} \mathrm{ICl}_{3}}\right)=1.361492=1.36 \mathrm{~mol} \mathrm{HIO}_{3}$
Finding the moles of HIO_{3} from the moles of $\mathrm{H}_{2} \mathrm{O}$ (if ICl_{3} is limiting):
Moles of $\mathrm{H}_{2} \mathrm{O}=\left(118.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=6.57603 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Moles HIO_{3} from $\mathrm{H}_{2} \mathrm{O}=\left(6.57603 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HIO}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=2.19201=2.19 \mathrm{~mol} \mathrm{HIO}_{3}$
ICl_{3} is the limiting reagent and will produce $1.36 \mathbf{~ m o l ~ H I O}_{3}$.
Mass (g) of $\mathrm{HIO}_{3}=\left(1.361492 \mathrm{~mol} \mathrm{HIO}_{3}\right)\left(\frac{175.9 \mathrm{~g} \mathrm{HIO}_{3}}{1 \mathrm{~mol} \mathrm{HIO}_{3}}\right)=239.486=\mathbf{2 3 9} \mathbf{g ~ H I O}_{3}$
Combining all steps gives:
Mass (g) of $\mathrm{HIO}_{3}=\left(635 \mathrm{~g} \mathrm{ICl}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{ICl}_{3}}{233.2 \mathrm{~g} \mathrm{ICl}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HIO}_{3}}{2 \mathrm{~mol} \mathrm{ICl}_{3}}\right)\left(\frac{175.9 \mathrm{~g} \mathrm{HIO}_{3}}{1 \mathrm{~mol} \mathrm{HIO}_{3}}\right)=239.486=\mathbf{2 3 9} \mathbf{g ~ H I O}$
The remaining mass of the excess reagent can be calculated from the amount of $\mathrm{H}_{2} \mathrm{O}$ combining with the limiting reagent.
Moles of $\mathrm{H}_{2} \mathrm{O}$ required to react with $635 \mathrm{~g} \mathrm{ICl}_{3}=\left(2.722985 \mathrm{~mol} \mathrm{ICl}_{3}\right)\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{ICl}_{3}}\right)=4.0844775 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Mass (g) of $\mathrm{H}_{2} \mathrm{O}$ required to react with $635 \mathrm{~g} \mathrm{ICl}_{3}=\left(4.0844775 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)$

$$
=73.6023=73.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \text { reacted }
$$

Remaining $\mathrm{H}_{2} \mathrm{O}=118.5 \mathrm{~g}-73.6 \mathrm{~g}=44.9 \mathbf{g ~ H}_{\mathbf{2}} \mathbf{O}$
Plan: First, balance the chemical equation. To determine which reactant is limiting, calculate the amount of $\mathrm{H}_{2} \mathrm{~S}$ formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of $\mathrm{H}_{2} \mathrm{~S}$ formed and the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.
Solution:
The balanced chemical equation for this reaction is:
$\mathrm{Al}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{~S}$
Finding the moles of $\mathrm{H}_{2} \mathrm{~S}$ from the moles of $\mathrm{Al}_{2} \mathrm{~S}_{3}$ (if $\mathrm{H}_{2} \mathrm{O}$ is limiting):
Moles of $\mathrm{Al}_{2} \mathrm{~S}_{3}=\left(158 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{150.17 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3}}\right)=1.05214 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}$
Moles of $\mathrm{H}_{2} \mathrm{~S}$ from $\mathrm{Al}_{2} \mathrm{~S}_{3}=\left(1.05214 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}\right)\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}\right)=3.15642=3.16 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$
Finding the moles of $\mathrm{H}_{2} \mathrm{~S}$ from the moles of $\mathrm{H}_{2} \mathrm{O}$ (if $\mathrm{Al}_{2} \mathrm{~S}_{3}$ is limiting):
Moles of $\mathrm{H}_{2} \mathrm{O}=\left(131 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=7.26970 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Moles of $\mathrm{H}_{2} \mathrm{~S}$ from $\mathrm{H}_{2} \mathrm{O}=\left(7.26970 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=3.63485=3.63 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$
$\mathrm{Al}_{2} \mathrm{~S}_{3}$ is the limiting reagent and $3.16 \mathbf{~ m o l}$ of $\mathbf{H}_{2} \mathrm{~S}$ will form.
Mass (g) of $\mathrm{H}_{2} \mathrm{~S}=\left(3.15642 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}\right)\left(\frac{34.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}\right)=107.602=\mathbf{1 0 8} \mathbf{g ~ H}_{2} \mathbf{S}$
Combining all steps gives:
Grams $\mathrm{H}_{2} \mathrm{~S}=\left(158 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{150.17 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}\right)\left(\frac{34.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}\right)=107.602=\mathbf{1 0 8} \mathbf{g ~ H} \mathbf{2} \mathbf{S}$
The remaining mass of the excess reagent can be calculated from the amount of $\mathrm{H}_{2} \mathrm{O}$ combining with the limiting reagent.
Moles of $\mathrm{H}_{2} \mathrm{O}$ required to react with $158{\mathrm{~g} \mathrm{of} \mathrm{Al}_{2} \mathrm{~S}_{3}=\left(1.05214 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}\right)\left(\frac{6 \mathrm{~mol} \mathrm{H}}{2} \mathrm{O}\right.}_{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}^{)})=6.31284 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Mass (g) of $\mathrm{H}_{2} \mathrm{O}$ required to react with 158 g of $\mathrm{Al}_{2} \mathrm{~S}_{3}=\left(6.31284 \mathrm{~mol}_{2} \mathrm{O}\right)\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=113.757 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Remaining $\mathrm{H}_{2} \mathrm{O}=131 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}-113.757 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=17.243=17 \mathbf{g ~ H}_{2} \mathbf{O}$
3.52 Plan: Write the balanced equation; the formula for carbon is C , the formula for oxygen is O_{2}, and the formula for carbon dioxide is CO_{2}. To determine which reactant is limiting, calculate the amount of CO_{2} formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of CO_{2} formed and the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.

Solution:

The balanced equation is: $\mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
Finding the moles of CO_{2} from the moles of carbon (if O_{2} is limiting):

Moles of CO_{2} from $\mathrm{C}=(0.100 \mathrm{~mol} \mathrm{C})\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}}\right)=0.100 \mathrm{~mol} \mathrm{CO}_{2}$
Finding the moles of CO_{2} from the moles of oxygen (if C is limiting):
Moles of $\mathrm{O}_{2}=\left(8.00 \mathrm{~g} \mathrm{O}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}}\right)=0.250 \mathrm{~mol} \mathrm{O}{ }_{2}$
Moles of CO_{2} from $\mathrm{O}_{2}=\left(0.250 \mathrm{molO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=0.25000=0.250 \mathrm{~mol} \mathrm{CO}_{2}$
Carbon is the limiting reactant and will be used to determine the amount of CO_{2} that will form.
Mass (g) of $\mathrm{CO}_{2}=(0.100 \mathrm{~mol} \mathrm{CO} 2)\left(\frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)=4.401=4.40 \mathrm{~g} \mathrm{CO}_{2}$
Since carbon is limiting, the \mathbf{O}_{2} is in excess. The amount remaining depends on how much combines with the limiting reagent.
Moles of O_{2} required to react with 0.100 mol of $\mathrm{C}=(0.100 \mathrm{~mol} \mathrm{C})\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}}\right)=0.100 \mathrm{~mol} \mathrm{O}_{2}$
Mass (g) of O_{2} required to react with 0.100 mol of $\mathrm{C}=\left(0.100 \mathrm{~mol} \mathrm{O}_{2}\right)\left(\frac{32.00 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=3.20 \mathrm{~g} \mathrm{O}_{2}$
Remaining $\mathrm{O}_{2}=8.00 \mathrm{~g}-3.20 \mathrm{~g}=4.80 \mathrm{~g} \mathrm{O}_{2}$
Plan: Write the balanced equation; the formula for hydrogen is H_{2}, the formula for oxygen is O_{2}, and the formula for water is $\mathrm{H}_{2} \mathrm{O}$. To determine which reactant is limiting, calculate the amount of $\mathrm{H}_{2} \mathrm{O}$ formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of $\mathrm{H}_{2} \mathrm{O}$ formed and the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.
Solution:
The balanced equation is: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Finding the moles of $\mathrm{H}_{2} \mathrm{O}$ from the moles of hydrogen (if O_{2} is limiting):
Moles of $\mathrm{H}_{2}=\left(0.0375 \mathrm{~g} \mathrm{H}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.016 \mathrm{~g} \mathrm{H}_{2}}\right)=0.01860 \mathrm{~mol} \mathrm{H}_{2}$
Moles of $\mathrm{H}_{2} \mathrm{O}$ from $\mathrm{H}_{2}=\left(0.01860 \mathrm{~mol} \mathrm{H}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}_{2}}\right)=0.01860=0.0186 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Finding the moles of $\mathrm{H}_{2} \mathrm{O}$ from the moles of oxygen (if H_{2} is limiting):
Mole of $\mathrm{H}_{2} \mathrm{O}$ from $\mathrm{O}_{2}=\left(0.0185 \mathrm{~mol} \mathrm{O}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=0.0370 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
The hydrogen is the limiting reactant, and will be used to determine the amount of water that will form.
Mass (g) of $\mathrm{H}_{2} \mathrm{O}=\left(0.01860 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.335172=\mathbf{0 . 3 3 5} \mathbf{g ~ H} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
Since the hydrogen is limiting; the oxygen must be the excess reactant. The amount of excess reactant is determined from the limiting reactant.
Moles of O_{2} required to react with 0.0375 g of $\mathrm{H}_{2}=\left(0.01860 \mathrm{~mol} \mathrm{H}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2}}\right)=0.00930 \mathrm{~mol} \mathrm{O}_{2}$
Mass (g) of O_{2} required to react with 0.0375 g of $\mathrm{H}_{2}=\left(0.00930 \mathrm{~mol} \mathrm{O}_{2}\right)\left(\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=0.2976 \mathrm{~g} \mathrm{O}_{2}$

Mass of O_{2} supplied $=\left(0.0185 \mathrm{~mol} \mathrm{O}_{2}\right)\left(\frac{32.00 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=0.5920 \mathrm{~g} \mathrm{O}_{2}$
Remaining $\mathrm{O}_{2}=0.5920 \mathrm{~g}-0.2976 \mathrm{~g}=0.2944=\mathbf{0 . 2 9 4} \mathbf{g ~ \mathbf { O } _ { 2 }}$
3.54 Plan: The question asks for the mass of each substance present at the end of the reaction. "Substance" refers to both reactants and products. Solve this problem using multiple steps. Recognizing that this is a limiting reactant problem, first write a balanced chemical equation. To determine which reactant is limiting, calculate the amount of any product formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Any product can be used to predict the limiting reactant; in this case, AlCl_{3} is used. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of both products formed and the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.
Solution:
The balanced chemical equation is:

$$
\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}(a q)+3 \mathrm{NH}_{4} \mathrm{Cl}(a q) \rightarrow \mathrm{AlCl}_{3}(a q)+3 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

Now determine the limiting reagent. We will use the moles of AlCl_{3} produced to determine which is limiting. Finding the moles of AlCl_{3} from the moles of $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$ (if $\mathrm{NH}_{4} \mathrm{Cl}$ is limiting):
Moles of $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}=\left(72.5 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}}{165.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}}\right)=0.439367 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$
Moles of AlCl_{3} from $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}=\left(0.439367 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{AlCl}}{3} 10.1 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}\right)=0.439367=0.439 \mathrm{~mol} \mathrm{AlCl}_{3}$
Finding the moles of AlCl_{3} from the moles of $\mathrm{NH}_{4} \mathrm{Cl}$ (if $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$ is limiting):
Moles of $\mathrm{NH}_{4} \mathrm{Cl}=\left(58.6 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}}{53.49 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}}\right)=1.09553 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}$
Moles of AlCl_{3} from $\mathrm{NH}_{4} \mathrm{Cl}=\left(1.09553 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}\right)\left(\frac{1 \mathrm{~mol} \mathrm{AlCl}_{3}}{3 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}}\right)=0.365177=0.365 \mathrm{~mol} \mathrm{AlCl}_{3}$
Ammonium chloride is the limiting reactant, and it is used for all subsequent calculations.
Mass of substances after the reaction:
$\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$:
Mass (g) of $\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$ (the excess reactant) required to react with 58.6 g of $\mathrm{NH}_{4} \mathrm{Cl}=$

$$
(1.09553 \mathrm{~mol} \mathrm{NH} 44 \mathrm{Cl})\left(\frac{1 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}}{3 \mathrm{~mol} \mathrm{NH}} 44 \mathrm{Cl}\right)\left(\frac{165.01 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}}{1 \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}}\right)=60.2579=60.3 \mathrm{~g} \mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}
$$

$\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$ remaining: $72.5 \mathrm{~g}-60.3 \mathrm{~g}=\mathbf{1 2 . 2} \mathbf{g ~ A l}\left(\mathbf{N O}_{2}\right)_{3}$
$\mathrm{NH}_{4} \mathrm{Cl}$: None left since it is the limiting reagent.
AlCl_{3} :
Mass (g) of $\mathrm{AlCl}_{3}=\left(0.365177 \mathrm{~mol} \mathrm{AlCl}_{3}\right)\left(\frac{133.33 \mathrm{~g} \mathrm{AlCl}_{3}}{1 \mathrm{~mol} \mathrm{AlCl}} 3 \mathrm{l}\right)=48.689=\mathbf{4 8 . 7} \mathbf{g ~ A l C l}_{\mathbf{3}}$
N_{2} :
Mass (g) of $\mathrm{N}_{2}=\left(1.09553 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}\right)\left(\frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}}\right)\left(\frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}\right)=30.697=\mathbf{3 0 . 7} \mathbf{g ~ \mathbf { N } _ { 2 }}$
$\mathrm{H}_{2} \mathrm{O}$:
Mass (g) of $\mathrm{H}_{2} \mathrm{O}=\left(1.09553 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}\right)\left(\frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{3 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Cl}}\right)\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=39.483=\mathbf{3 9 . 5} \mathbf{g ~ H} \mathbf{~ H} \mathbf{O}$

Plan: The question asks for the mass of each substance present at the end of the reaction. "Substance" refers to both reactants and products. Solve this problem using multiple steps. Recognizing that this is a limiting reactant problem, first write a balanced chemical equation. To determine which reactant is limiting, calculate the amount of any product formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Any product can be used to predict the limiting reactant; in this case, CaF_{2} is used. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of both products formed and the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.

Solution:

The balanced chemical equation is:
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{~F}(\mathrm{~s}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})+2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Now determine the limiting reagent. We will use the moles of CaF_{2} produced to determine which is limiting. Finding the moles of CaF_{2} from the moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (if $\mathrm{NH}_{4} \mathrm{~F}$ is limiting):
Moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=\left(16.8 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}{164.10 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}\right)=0.1023766 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
Moles of CaF_{2} from $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=\left(0.1023766 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaF}}{2}\right.$ $\left.) ~ 1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)$

$$
=0.1023766=0.102 \mathrm{~mol} \mathrm{CaF}_{2}
$$

Finding the moles of CaF_{2} from the moles of $\mathrm{NH}_{4} \mathrm{~F}$ (if $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is limiting):
Moles of $\mathrm{NH}_{4} \mathrm{~F}=\left(17.50 \mathrm{~g} \mathrm{NH}_{4} \mathrm{~F}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{~F}}{37.04 \mathrm{~g} \mathrm{NH}_{4} \mathrm{~F}}\right)=0.47246 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{~F}$
Moles of CaF_{2} from $\mathrm{NH}_{4} \mathrm{~F}=\left(0.47246 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{~F}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaF}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{~F}}\right)=0.23623=0.236 \mathrm{~mol} \mathrm{CaF}_{2}$
Calcium nitrate is the limiting reactant, and it is used for all subsequent calculations
Mass of substances after the reaction:
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$: None (It is the limiting reactant.)
$\mathrm{NH}_{4} \mathrm{~F}$:
Mass (g) of $\mathrm{NH}_{4} \mathrm{~F}$ (the excess reactant) required to react with 16.8 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=$

$$
\left(0.1023766 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}\right)\left(\frac{37.04 \mathrm{~g} \mathrm{NH}_{4} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{~F}}\right)=7.58406 \mathrm{~g} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}
$$

$\mathrm{NH}_{4} \mathrm{~F}$ remaining: $17.50 \mathrm{~g}-7.58 \mathrm{~g}=9.9159=\mathbf{9 . 9 2} \mathbf{g} \mathbf{N H}_{4} \mathbf{F}$
CaF_{2} :
Mass (g) of $\mathrm{CaF}_{2}=\left(0.1023766 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaF}}{2}\right)\left(\frac{78.08 \mathrm{~g} \mathrm{CaF}_{2}}{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}\right)=7.99356=7.99 \mathbf{g ~ C a F} \mathbf{2}$ $\mathrm{N}_{2} \mathrm{O}$:
Mass (g) of $\mathrm{N}_{2} \mathrm{O}=\left(0.1023766 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}\right)\left(\frac{44.02 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{~N}} \mathrm{~N}_{2} \mathrm{O}\right)=9.0132=\mathbf{9 . 0 1} \mathbf{g} \mathbf{N}_{\mathbf{2}} \mathbf{O}$ $\mathrm{H}_{2} \mathrm{O}$:
Mass (g) of $\mathrm{H}_{2} \mathrm{O}=\left(0.1023766 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}\right)\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=7.3793=7.38 \mathbf{g ~ H} \mathbf{~} \mathbf{2} \mathbf{O}$
Plan: Express the yield of each step as a fraction of 1.00; multiply the fraction of the first step by that of the second step and then multiply by 100 to get the overall percent yield.
Solution:
$73 \%=0.73 ; 68 \%=0.68$
$(0.73 \times 0.68) \times 100=49.64=\mathbf{5 0 .} \%$

Plan: Express the yield of each step as a fraction of 1.00; multiply the fraction of the first step by that of the second step and then multiply by 100 to get the overall percent yield.
Solution:
$48 \%=0.48 ; 73 \%=0.73$
$(0.48 \times 0.73) \times 100=35.04=\mathbf{3 5 \%}$
Plan: Write and balance the chemical equation using the formulas of the substances. Determine the theoretical yield of the reaction from the mass of tungsten(VI) oxide. To do that, convert the mass of tungsten(VI) oxide to moles by dividing by its molar mass and then use the mole ratio between tungsten(VI) oxide and water to determine the moles and then mass of water that should be produced. Use the density of water to determine the actual yield of water in grams. The actual yield divided by the theoretical yield just calculated (with the result multiplied by 100\%) gives the percent yield.

Solution:

The balanced chemical equation is:
$\mathrm{WO}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{W}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Determining the theoretical yield of $\mathrm{H}_{2} \mathrm{O}$:
Moles of $\mathrm{WO}_{3}=\left(45.5 \mathrm{~g} \mathrm{WO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{WO}}{3} \mathrm{WO}_{2}\right)=0.1962053 \mathrm{~mol} \mathrm{WO}_{3}$
Mass (g) of $\mathrm{H}_{2} \mathrm{O}$ (theoretical yield) $=\left(0.1962053 \mathrm{~mol} \mathrm{WO}_{3}\right)\left(\frac{3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{WO}_{3}}\right)\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=10.60686 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Determining the actual yield of $\mathrm{H}_{2} \mathrm{O}$:
Mass (g) of $\mathrm{H}_{2} \mathrm{O}$ (actual yield) $=\left(9.60 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}\right)=9.60 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$\%$ yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%=\left(\frac{9.60 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{10.60686 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right) \times 100 \%=90.5075=\mathbf{9 0 . 5 \%}$
3.59 Plan: Write and balance the chemical equation using the formulas of the substances. Determine the theoretical yield of the reaction from the mass of phosphorus trichloride. To do that, convert the mass of phosphorus trichloride to moles by dividing by its molar mass and then use the mole ratio between phosphorus trichloride and HCl to determine the moles and then mass of HCl that should be produced. The actual yield of the HCl is given. The actual yield divided by the theoretical yield just calculated (with the result multiplied by 100\%) gives the percent yield.
Solution:
The balanced chemical equation is:
$\mathrm{PCl}_{3}(l)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}(a q)+3 \mathrm{HCl}(g)$
Determining the theoretical yield of HCl :
Moles of $\mathrm{PCl}_{3}=\left(200 . \mathrm{g} \mathrm{PCl}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{PCl}_{3}}{137.32 \mathrm{~g} \mathrm{PCl}_{3}}\right)=1.456452 \mathrm{~mol} \mathrm{PCl} 3$
$\operatorname{Mass}(\mathrm{g})$ of HCl (theoretical yield) $=\left(1.456452 \mathrm{~mol} \mathrm{PCl}_{3}\right)\left(\frac{3 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{PCl}_{3}}\right)\left(\frac{36.46 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}\right)=159.3067 \mathrm{~g} \mathrm{HCl}$
Actual yield (g) of HCl is given as 128 g HCl .
Calculate the percent yield:
$\%$ yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%=\left(\frac{128 \mathrm{~g} \mathrm{HCl}}{159.3067 \mathrm{~g} \mathrm{HCl}}\right) \times 100 \%=80.3481586=\mathbf{8 0 . 3 \%}$

Plan: Write the balanced chemical equation. Since quantities of two reactants are given, we must determine which is the limiting reactant. To determine which reactant is limiting, calculate the amount of any product formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Any product can be used to predict the limiting reactant; in this case, $\mathrm{CH}_{3} \mathrm{Cl}$ is used. Only 75.0% of the calculated amounts of products actually form, so the actual yield is 75% of the theoretical yield.
Solution:
The balanced equation is: $\mathrm{CH}_{4}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(g)+\mathrm{HCl}(g)$
Determining the limiting reactant:
Finding the moles of $\mathrm{CH}_{3} \mathrm{Cl}$ from the moles of CH_{4} (if Cl_{2} is limiting):
Moles of $\mathrm{CH}_{4}=\left(20.5 \mathrm{~g} \mathrm{CH}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}\right)=1.278055 \mathrm{~mol} \mathrm{CH}_{4}$
Moles of $\mathrm{CH}_{3} \mathrm{Cl}$ from $\mathrm{CH}_{4}=\left(1.278055 \mathrm{~mol} \mathrm{CH}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)=1.278055 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}$
Finding the moles of $\mathrm{CH}_{3} \mathrm{Cl}$ from the moles of Cl_{2} (if CH_{4} is limiting):
Moles of $\mathrm{Cl}_{2}=\left(45.0 \mathrm{~g} \mathrm{Cl}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.90 \mathrm{~g} \mathrm{Cl}_{2}}\right)=0.634697 \mathrm{~mol} \mathrm{Cl}_{2}$
Moles of $\mathrm{CH}_{3} \mathrm{Cl}$ from $\mathrm{Cl}_{2}=\left(0.634697 \mathrm{~mol} \mathrm{Cl}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}\right)=0.634697 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}$
Chlorine is the limiting reactant and is used to determine the theoretical yield of $\mathrm{CH}_{3} \mathrm{Cl}$:
Mass (g) of $\mathrm{CH}_{3} \mathrm{Cl}($ theoretical yield $)=\left(0.634697 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}\right)\left(\frac{50.48 \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}}\right)=32.0395 \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}$
$\%$ yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%$
Actual yield (g) of $\mathrm{CH}_{3} \mathrm{Cl}=\frac{\% \text { yield }}{100 \%}($ theoretical yield $)=\frac{75 \%}{100 \%}\left(32.0395 \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}\right)=24.02962=\mathbf{2 4 . 0} \mathbf{g ~ C H} \mathbf{3} \mathbf{C l}$

Plan: Write the balanced chemical equation. Since quantities of two reactants are given, we must determine which is the limiting reactant. To determine which reactant is limiting, calculate the amount of product formed from each reactant, assuming an excess of the other reactant. Only 93.0% of the calculated amount of product actually forms, so the actual yield is 93.0% of the theoretical yield.
Solution:
The balanced equation is: $3 \mathrm{Ca}(s)+\mathrm{N}_{2}(g) \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}(s)$
Determining the limiting reactant:
Finding the moles of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ from the moles of Ca (if N_{2} is limiting):
Moles of $\mathrm{Ca}=(56.6 \mathrm{~g} \mathrm{Ca})\left(\frac{1 \mathrm{~mol} \mathrm{Ca}}{40.08 \mathrm{~g} \mathrm{Ca}}\right)=1.412176 \mathrm{~mol} \mathrm{Ca}$
Moles of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ from $\mathrm{Ca}=(1.412176 \mathrm{~mol} \mathrm{Ca})\left(\frac{1 \mathrm{~mol} \mathrm{Ca}_{3} \mathrm{~N}_{2}}{3 \mathrm{~mol} \mathrm{Ca}}\right)=0.470725 \mathrm{~mol} \mathrm{Ca}_{3} \mathrm{~N}_{2}$
Finding the moles of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ from the moles of N_{2} (if Ca is limiting):
Moles of $\mathrm{N}_{2}=\left(30.5 \mathrm{~g} \mathrm{~N}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.02 \mathrm{~g} \mathrm{~N}_{2}}\right)=1.08851 \mathrm{~mol} \mathrm{~N}_{2}$
Moles of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ from $\mathrm{N}_{2}=(1.08851 \mathrm{~mol} \mathrm{~N} 2)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}_{3} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}\right)=1.08851 \mathrm{~mol} \mathrm{Ca}_{3} \mathrm{~N}_{2}$
$C a$ is the limiting reactant and is used to determine the theoretical yield of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$.
Mass (g) of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ (theoretical yield) $=\left(0.470725 \mathrm{~mol} \mathrm{Ca}_{3} \mathrm{~N}_{2}\right)\left(\frac{148.26 \mathrm{~g} \mathrm{Ca}_{3} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{Ca}_{3} \mathrm{~N}_{2}}\right)=69.7897 \mathrm{~g} \mathrm{Ca}_{3} \mathrm{~N}_{2}$
$\%$ yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%$
Actual yield (g) of $\mathrm{Ca}_{3} \mathrm{~N}_{2}=\frac{\% \text { yield }}{100 \%}($ theoretical yield $)=\frac{93 \%}{100 \%}\left(69.7897 \mathrm{~g} \mathrm{Ca}_{3} \mathrm{~N}_{2}\right)=64.9044=\mathbf{6 4 . 9} \mathbf{g ~ C a} \mathbf{3}_{3}$
Plan: Write the balanced equation; the formula for fluorine is F_{2}, the formula for carbon tetrafluoride is CF_{4}, and the formula for nitrogen trifluoride is NF_{3}. To determine which reactant is limiting, calculate the amount of CF_{4} formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the mass of CF_{4} formed.
Solution:
The balanced chemical equation is:
$(\mathrm{CN})_{2}(\mathrm{~g})+7 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CF}_{4}(\mathrm{~g})+2 \mathrm{NF}_{3}(\mathrm{~g})$
Determining the limiting reactant:
Finding the moles of CF_{4} from the moles of $(\mathrm{CN})_{2}$ (if F_{2} is limiting):
Moles of CF_{4} from $(\mathrm{CN})_{2}=\left(60.0 \mathrm{~g}(\mathrm{CN})_{2}\right)\left(\frac{1 \mathrm{~mol}(\mathrm{CN})_{2}}{52.04 \mathrm{~g}(\mathrm{CN})_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{CF}_{4}}{1 \mathrm{~mol}(\mathrm{CN})_{2}}\right)=2.30592 \mathrm{~mol} \mathrm{CF}_{4}$
Finding the moles of CF_{4} from the moles of F_{2} (if $(\mathrm{CN})_{2}$ is limiting):
Moles of CF_{4} from $\mathrm{F}_{2}=\left(60.0 \mathrm{~g} \mathrm{~F}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~F}_{2}}{38.00 \mathrm{~g} \mathrm{~F}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{CF}_{4}}{7 \mathrm{~mol} \mathrm{~F}_{2}}\right)=0.4511278 \mathrm{~mol} \mathrm{CF}_{4}$
F_{2} is the limiting reactant, and will be used to calculate the amount of CF_{4} produced.
Mass (g) of $\mathrm{CF}_{4}=\left(60.0 \mathrm{~g} \mathrm{~F}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~F}_{2}}{38.00 \mathrm{~g} \mathrm{~F}_{2}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{CF}_{4}}{7 \mathrm{~mol} \mathrm{~F}_{2}}\right)\left(\frac{88.01 \mathrm{~g} \mathrm{CF}_{4}}{1 \mathrm{~mol} \mathrm{CF}_{4}}\right)=39.70376=39.7 \mathrm{~g} \mathrm{CF}_{4}$
Plan: Write and balance the chemical reaction. Remember that both chlorine and oxygen exist as diatomic molecules. Use the mole ratio between oxygen and dichlorine monoxide to find the moles of dichlorine monoxide that reacted. Multiply the amount in moles by Avogadro's number to convert to number of molecules.

Solution:

a) Both oxygen and chlorine are diatomic. Scene \mathbf{A} best represents the product mixture as there are O_{2} and Cl_{2} molecules in Scene A. Scene B shows oxygen and chlorine atoms and Scene C shows atoms and molecules. Oxygen and chlorine atoms are NOT products of this reaction.
b) The balanced reaction is $\mathbf{2} \mathbf{C l}_{\mathbf{2}} \mathbf{O}(\mathrm{g}) \rightarrow \mathbf{2} \mathbf{C l}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$.
c) There is a $2: 1$ mole ratio between Cl_{2} and O_{2}. In Scene A, there are 6 green molecules and 3 red molecules. Since twice as many Cl_{2} molecules are produced as there are O_{2} molecules produced, the red molecules are the O_{2} molecules.

$$
\begin{aligned}
& \text { Moles of } \mathrm{Cl}_{2} \mathrm{O}=\left(3 \mathrm{O}_{2} \text { molecules }\right)\left(\frac{2 \mathrm{O} \text { atoms }}{1 \mathrm{O}_{2} \text { molecule }}\right)\left(\frac{0.050 \mathrm{~mol} \mathrm{O} \text { atoms }}{1 \mathrm{O} \text { atom }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2} \text { molecules }}{2 \mathrm{~mol} \mathrm{O} \text { atoms }}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right) \\
&=0.30 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O} \\
& \text { Molecules of } \mathrm{Cl}_{2} \mathrm{O}=\left(0.30 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}\right)\left(\frac{6.022 \times 10^{23} \mathrm{Cl}_{2} \mathrm{O} \text { molecules }}{1 \mathrm{~mol} \mathrm{Cl}_{2} \mathrm{O}}\right) \\
& \quad=1.8066 \times 10^{23}=\mathbf{1 . 8 \times 1 0 ^ { 2 3 } \mathbf { C l } _ { 2 } \mathbf { O } \text { molecules }}
\end{aligned}
$$

Plan: Write a balanced equation. Use the density of butane to convert the given volume of butane to mass and divide by the molar mass of butane to convert mass to moles. Use the mole ratio between butane and oxygen to find the moles and then mass of oxygen required for the reaction. The mole ratio between butane and water is used to find the moles of water produced and the mole ratio between butane and carbon dioxide is used to find the moles of carbon dioxide produced. The total moles of product are multiplied by Avogadro's number to find the number of product molecules.

Solution:

The balanced chemical equation is:
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a) Moles of $\mathrm{C}_{4} \mathrm{H}_{10}=\left(5.50 \mathrm{~mL} \mathrm{C}_{4} \mathrm{H}_{10}\right)\left(\frac{0.579 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}}{1 \mathrm{~mL} \mathrm{C}_{4} \mathrm{H}_{10}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}}{58.12 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}}\right)=0.054792 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}$

Mass (g) of $\mathrm{O}_{2}=\left(0.054792 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}\right)\left(\frac{13 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}}\right)\left(\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=11.3967=\mathbf{1 1 . 4} \mathbf{g ~ \mathbf { O } _ { 2 }}$
b) Moles of $\mathrm{H}_{2} \mathrm{O}=\left(0.054792 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}\right)\left(\frac{10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}}\right)=0.27396=\mathbf{0 . 2 7 4} \mathbf{~ m o l ~ H} \mathbf{2} \mathbf{O}$
c) Moles of $\mathrm{CO}_{2}=\left(0.054792 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}\right)\left(\frac{8 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}}\right)=0.219168 \mathrm{~mol} \mathrm{CO}_{2}$

Total moles $=0.27396 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}+0.219168 \mathrm{~mol} \mathrm{CO}_{2}=0.493128 \mathrm{~mol}$
Total molecules $=(0.493128 \mathrm{~mol})\left(\frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}\right)=2.96962 \times 10^{23}=\mathbf{2 . 9 7 \times 1 0 ^ { 2 3 }}$ molecules

Plan: Write a balanced equation for the reaction. Convert the given mass of each reactant to moles by dividing by the molar mass of that reactant. Use the mole ratio from the balanced chemical equation to find the moles of NaBH_{4} formed from each reactant, assuming an excess of the other reactant. The reactant that produces fewer moles of product is the limiting reactant. Convert the moles of NaBH_{4} obtained from the limiting reactant to grams using the molar mass. This is the theoretical yield of NaBH_{4}. Since there is a yield of 88.5%, the amount of NaBH_{4} actually obtained will be 88.5% of the theoretical yield.
Solution:
The balanced chemical equation is:
$2 \mathrm{NaH}(\mathrm{s})+\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow 2 \mathrm{NaBH}_{4}(\mathrm{~s})$
Determining the limiting reactant:
Finding the moles of NaBH_{4} from the amount of NaH (if $\mathrm{B}_{2} \mathrm{H}_{6}$ is limiting):
Moles of NaBH_{4} from $\mathrm{NaH}=(7.98 \mathrm{~g} \mathrm{NaH})\left(\frac{1 \mathrm{~mol} \mathrm{NaH}}{24.00 \mathrm{~g} \mathrm{NaH}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NaBH}_{4}}{2 \mathrm{~mol} \mathrm{NaH}}\right)=0.3325 \mathrm{~mol} \mathrm{NaBH}_{4}$
Finding the moles of NaBH_{4} from the amount of $\mathrm{B}_{2} \mathrm{H}_{6}$ (if NaH is limiting):
Moles of NaBH_{4} from $\mathrm{B}_{2} \mathrm{H}_{6}=\left(8.16 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}{27.67 \mathrm{~g} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NaBH}_{4}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{H}_{6}}\right)=0.58981 \mathrm{~mol} \mathrm{NaBH} 44$
NaH is the limiting reactant, and will be used to calculate the theoretical yield of NaBH_{4}.
Mass (g) of $\mathrm{NaBH}_{4}=(0.3325 \mathrm{~mol} \mathrm{NaBH} 44)\left(\frac{37.83 \mathrm{~g} \mathrm{NaBH}_{4}}{1 \mathrm{~mol} \mathrm{NaBH}_{4}}\right)=12.5785 \mathrm{~g} \mathrm{NaBH}_{4}$
$\%$ yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%$
Mass (g) of $\mathrm{NaBH}_{4}=\left(\frac{\% \text { yield }}{100 \%}\right)($ theoretical yield $)=\left(\frac{88.5 \%}{100 \%}\right)\left(12.5785 \mathrm{~g} \mathrm{NaHB}_{4}\right)=11.13197=\mathbf{1 1 . 1} \mathbf{g ~ \mathbf { N a B H } _ { 4 }}$
Combining all steps gives:
Mass (g) of $\begin{aligned} \mathrm{NaBH}_{4} & =(7.98 \mathrm{~g} \mathrm{NaH})\left(\frac{1 \mathrm{~mol} \mathrm{NaH}}{24.00 \mathrm{~g} \mathrm{NaH}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{NaBH}_{4}}{2 \mathrm{~mol} \mathrm{NaH}}\right)\left(\frac{37.83 \mathrm{~g} \mathrm{NaBH}_{4}}{1 \mathrm{~mol} \mathrm{NaBH}_{4}}\right)\left(\frac{88.5 \%}{100 \%}\right) \\ & =11.13197=\mathbf{1 1 . 1} \mathbf{g ~ N a B H}_{4}\end{aligned}$

Plan: Recall that molarity = moles of solute/volume (L) of solution. Here you can use the number of particles in place of moles of solute.
Solution:
a) Solution \mathbf{B} has the highest molarity as it has the largest number of particles, 12, in a volume of 50 mL .
b) Solutions A and F both have 8 particles in a volume of 50 mL and thus the same molarity. Solutions C, D, and \mathbf{E} all have 4 particles in a volume of 50 mL and thus have the same molarity.
c) Mixing Solutions A and C results in $8+4=12$ particles in a volume of 100 mL . That is a lower molarity than that of Solution B which has 12 particles in a volume of 50 mL or 24 particles in a volume of 100 mL .
d) Adding 50 mL to Solution D would result in 4 particles in a total volume of 100 mL ; adding 75 mL to Solution

F would result in 4 particles in a volume of 100 mL . The molarity of each solution would be the same.
e) Solution A has 8 particles in a volume of 50 mL while Solution E has the equivalent of 4 particles in a volume of 50 mL . The molarity of Solution E is half that of Solution A. Therefore half of the volume, $\mathbf{1 2 . 5} \mathbf{~ m L}$, of Solution E must be evaporated. When 12.5 mL of solvent is evaporated from Solution E, the result will be 2 particles in 12.5 mL or 8 particles in 50 mL as in Solution A.

Plan: The spheres represent particles of solute and the amount of solute per given volume of solution determines its concentration. Molarity = moles of solute/volume (L) of solution.
Solution:
a) Box C has more solute added because it contains 2 more spheres than Box A contains.
b) Box B has more solvent because solvent molecules have displaced two solute molecules.
c) Box C has a higher molarity, because it has more moles of solute per volume of solution.
d) Box B has a lower concentration (and molarity), because it has fewer moles of solute per volume of solution.

Plan: In all cases, use the known quantities and the definition of molarity $\left(M=\frac{\text { moles solute }}{\mathrm{L} \text { of solution }}\right)$ to find the unknown quantity. Volume must be expressed in liters. The molar mass is used to convert moles to grams. The chemical formulas must be written to determine the molar mass. (a) You will need to convert milliliters to liters, multiply by the molarity to find moles, and convert moles to mass in grams. (b) Convert mass of solute to moles and volume from mL to liters. Divide the moles by the volume. (c) Multiply the molarity by the volume.
Solution:
a) Calculating moles of solute in solution:

Moles of $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}=(185.8 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.267 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}}{1 \mathrm{~L}}\right)=0.0496086 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
Converting from moles of solute to grams:
Mass (g) of $\mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}=\left(0.0496086 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\right)\left(\frac{158.17 \mathrm{~g} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}}{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}}\right)$

$$
=7.84659=7.85 \mathrm{~g} \mathrm{Ca}\left(\mathrm{C}_{2} \mathbf{H}_{3} \mathbf{O}_{2}\right)_{2}
$$

b) Converting grams of solute to moles:

Moles of KI $=(21.1 \mathrm{~g} \mathrm{KI})\left(\frac{1 \mathrm{~mol} \mathrm{KI}}{166.0 \mathrm{~g} \mathrm{KI}}\right)=0.127108$ moles KI
Volume $(\mathrm{L})=(500 . \mathrm{mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)=0.500 \mathrm{~L}$
Molarity of KI $=\frac{0.127108 \mathrm{~mol} \mathrm{KI}}{0.500 \mathrm{~L}}=0.254216=\mathbf{0 . 2 5 4} \mathbf{M ~ K I}$
c) Moles of $\mathrm{NaCN}=(145.6 \mathrm{~L})\left(\frac{0.850 \mathrm{~mol} \mathrm{NaCN}}{1 \mathrm{~L}}\right)=123.76=\mathbf{1 2 4} \mathbf{~ m o l ~ N a C N}$

Plan: In all cases, use the known quantities and the definition of molarity $\left(M=\frac{\text { moles solute }}{\mathrm{L} \text { of solution }}\right)$ to find the unknown quantity. Volume must be expressed in liters. The molar mass is used to convert moles to grams. The chemical formulas must be written to determine the molar mass. (a) You will need to convert mass of solute to moles and divide by the molarity to obtain volume in liters, which is then converted to milliliters. (b) Multiply the volume by the molarity to obtain moles of solute. Use Avogadro's number to determine the number of ions present. (c) Divide mmoles by milliliters; molarity may not only be expressed as moles/L, but also as mmoles/mL.
Solution:
a) Converting mass of solute to moles:

Moles of $\mathrm{KOH}=(8.42 \mathrm{~g} \mathrm{KOH})\left(\frac{1 \mathrm{~mol} \mathrm{KOH}}{56.11 \mathrm{~g} \mathrm{KOH}}\right)=0.15006 \mathrm{~mol} \mathrm{KOH}$
Volume (L) of KOH solution $=(0.15006 \mathrm{~mol} \mathrm{KOH})\left(\frac{1 \mathrm{~L}}{2.26 \mathrm{~mol}}\right)=0.066398 \mathrm{~L} \mathrm{KOH}$ solution
Volume (mL) of KOH solution $=(0.066398 \mathrm{~L} \mathrm{KOH})\left(\frac{1 \mathrm{~L}}{10^{-3} \mathrm{~mL}}\right)=66.39823=\mathbf{6 6 . 4} \mathbf{~ m L ~ K O H}$ solution
b) Moles of $\mathrm{CuCl}_{2}=(52 \mathrm{~L})\left(\frac{2.3 \mathrm{~mol} \mathrm{CuCl}_{2}}{\mathrm{~L}}\right)=119.6 \mathrm{~mol} \mathrm{CuCl}{ }_{2}$

Moles of Cu^{2+} ions $=\left(119.6 \mathrm{~mol} \mathrm{CuCl}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cu}^{2+}}{1 \mathrm{~mol} \mathrm{CuCl}_{2}}\right)=119.6 \mathrm{~mol} \mathrm{Cu}^{2+}$ ions
Converting moles of ions to number of ions:
Number of Cu^{2+} ions $=\left(119.6 \mathrm{~mol} \mathrm{Cu}^{2+}\right.$ ions $)\left(\frac{6.022 \times 10^{23} \mathrm{Cu}^{2+} \text { ions }}{1 \mathrm{~mol} \mathrm{Cu}^{2+} \text { ions }}\right)=7.2023 \times 10^{25}=7.2 \times 10^{\mathbf{2 5}} \mathbf{C u}^{2+}$ ions
c) M glucose $=\left(\frac{135 \mathrm{mmol} \text { glucose }}{275 \mathrm{~mL}}\right)=0.490909=\mathbf{0 . 4 9 1} \boldsymbol{M}$ glucose

Note: Since 1 mmol is $10^{-3} \mathrm{~mol}$ and 1 mL is $10^{-3} \mathrm{~L}$, we can use these units instead of converting to mol and L since molarity is a ratio of mol $/ \mathrm{L}$. Molarity may not only be expressed as moles $/ \mathrm{L}$, but also as mmoles $/ \mathrm{mL}$.

Plan: These are dilution problems. Dilution problems can be solved by converting to moles and using the new volume; however, it is much easier to use $M_{1} V_{1}=M_{2} V_{2}$. The dilution equation does not require a volume in liters; it only requires that the volume units match. In part c), it is necessary to find the moles of sodium ions in each separate solution, add these two mole amounts, and divide by the total volume of the two solutions.
Solution:

$$
\begin{aligned}
& \text { a) } M_{1}=0.250 \mathrm{MKCl} \quad V_{1}=37.00 \mathrm{~mL} \quad M_{2}=\text { ? } \quad V_{2}=150.00 \mathrm{~mL} \\
& M_{1} V_{1}=M_{2} V_{2} \\
& M_{2}=\frac{M_{1} \times V_{1}}{V_{2}}=\frac{(0.250 M)(37.00 \mathrm{~mL})}{150.0 \mathrm{~mL}}=0.061667=\mathbf{0 . 0 6 1 7} \mathbf{M} \mathbf{~ K C l} \\
& \text { b) } M_{1}=0.0706 M\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \quad V_{1}=25.71 \mathrm{~mL} \quad M_{2}=\text { ? } \quad V_{2}=500.00 \mathrm{~mL} \\
& M_{1} V_{1}=M_{2} V_{2} \\
& M_{2}=\frac{M_{1} \times V_{1}}{V_{2}}=\frac{(0.0706 M)(25.71 \mathrm{~mL})}{500.0 \mathrm{~mL}}=0.003630=\mathbf{0 . 0 0 3 6 3} \boldsymbol{M}\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S O}_{4} \\
& \text { c) Moles of } \mathrm{Na}^{+} \text {from } \mathrm{NaCl} \text { solution }=(3.58 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.348 \mathrm{~mol} \mathrm{NaCl}}{1 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{NaCl}}\right) \\
& =0.00124584 \mathrm{~mol} \mathrm{Na}^{+}
\end{aligned}
$$

Moles of Na^{+}from $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution $=(500 . \mathrm{mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{6.81 \times 10^{-2} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}\right)$

$$
=0.0681 \mathrm{~mol} \mathrm{Na}^{+}
$$

Total moles of Na^{+}ions $=0.00124584 \mathrm{~mol} \mathrm{Na}^{+}$ions $+0.0681 \mathrm{~mol} \mathrm{Na}^{+}$ions $=0.06934584 \mathrm{~mol} \mathrm{Na}^{+}$ions
Total volume $=3.58 \mathrm{~mL}+500 . \mathrm{mL}=503.58 \mathrm{~mL}=0.50358 \mathrm{~L}$
Molarity of $\mathrm{Na}^{+}=\frac{\text { total moles } \mathrm{Na}^{+} \text {ions }}{\text { total volume }}=\frac{0.06934584 \mathrm{~mol} \mathrm{Na}^{+} \text {ions }}{0.50358 \mathrm{~L}}=0.1377057=\mathbf{0 . 1 3 8} \mathbf{~ M ~ N a}$. ions
Plan: These are dilution problems. Dilution problems can be solved by converting to moles and using the new volume; however, it is much easier to use $M_{1} V_{1}=M_{2} V_{2}$. The dilution equation does not require a volume in liters; it only requires that the volume units match.
Solution:

$$
\begin{aligned}
& \text { a) } M_{1}=2.050 M \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \quad V_{1}=? \quad M_{2}=0.8543 \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \quad V_{2}=750.0 \mathrm{~mL} \\
& M_{1} V_{1}=M_{2} V_{2} \\
& V_{1}=\frac{M_{2} \times V_{2}}{M_{1}}=\frac{(0.8543 M)(750.0 \mathrm{~mL})}{2.050 M}=312.5488=312.5 \mathrm{~mL} \\
& \text { b) } M_{1}=1.63 \mathrm{M} \mathrm{CaCl}_{2} \quad M_{1} \mathrm{Cl}^{-}=\left(\frac{1.63 \mathrm{~mol} \mathrm{CaCl}_{2}}{1 \mathrm{~L}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{CaCl}_{2}}\right)=3.26 \mathrm{M} \mathrm{Cl}^{-} \text {ions } \\
& M_{1}=3.26 \mathrm{M} \mathrm{Cl}^{-} \quad V_{1}=\text { ? } \quad M_{2}=2.86 \times 10^{-2} \mathrm{M} \mathrm{Cl}^{-} \text {ions } \quad V_{2}=350 . \mathrm{mL} \\
& M_{1} V_{1}=M_{2} V_{2} \\
& V_{1}=\frac{M_{2} \times V_{2}}{M_{1}}=\frac{\left(2.86 \times 10^{-2} M\right)(350 . \mathrm{mL})}{3.26 M}=3.07055=3.07 \mathrm{~mL} \\
& \text { c) } M_{1}=0.155 M \mathrm{Li}_{2} \mathrm{CO}_{3} \quad V_{1}=18.0 \mathrm{~mL} \quad M_{2}=0.0700 M \mathrm{Li}_{2} \mathrm{CO}_{3} \quad V_{2}=\text { ? } \\
& M_{1} V_{1}=M_{2} V_{2} \\
& V_{2}=\frac{M_{1} \times V_{1}}{M_{2}}=\frac{(0.155 M)(18.0 \mathrm{~mL})}{(0.0700 M)}=39.8571=39.9 \mathbf{m L}
\end{aligned}
$$

3.72 Plan: Use the density of the solution to find the mass of 1 L of solution. Volume in liters must be converted to volume in mL . The 70.0% by mass translates to 70.0 g solute $/ 100 \mathrm{~g}$ solution and is used to find the mass of HNO_{3} in 1 L of solution. Convert mass of HNO_{3} to moles to obtain moles/L, molarity.
Solution:
a) Mass (g) of 1 L of solution $=(1 \mathrm{~L}$ solution $)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1.41 \mathrm{~g} \text { solution }}{1 \mathrm{~mL}}\right)=1410 \mathrm{~g}$ solution

Mass (g) of HNO_{3} in 1 L of solution $=(1410 \mathrm{~g}$ solution $)\left(\frac{70.0 \mathrm{~g} \mathrm{HNO}}{3} \mathrm{H}\right)=\mathbf{9 8 7} \mathbf{g ~ \mathbf { ~ H N O }} 3 \mathbf{3}$ solution
b) Moles of $\mathrm{HNO}_{3}=\left(987 \mathrm{~g} \mathrm{HNO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{63.02 \mathrm{~g} \mathrm{HNO}_{3}}\right)=15.6617 \mathrm{~mol} \mathrm{HNO}_{3}$

Molarity of $\mathrm{HNO}_{3}=\left(\frac{15.6617 \mathrm{~mol} \mathrm{HNO}}{3}\right.$ $)=15.6617=\mathbf{1 5}$ solution $\mathbf{M ~ H N O}_{3}$
Plan: Use the molarity of the solution to find the moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1 mL . Convert moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$, divide that mass by the mass of 1 mL of solution, and multiply by 100 for mass percent. Use the density of the solution to find the mass of 1 mL of solution.
Solution:
a) Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $1 \mathrm{~mL}=\left(\frac{18.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)=\mathbf{1 . 8 3} \times 10^{-2} \mathbf{m o l ~ H}_{\mathbf{2}} \mathbf{S O}_{4} / \mathbf{m L}$
b) Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $1 \mathrm{~mL}=\left(1.83 \times 10^{-2} \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}\right)\left(\frac{98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right)=1.79505 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$

Mass of 1 mL of solution $=(1 \mathrm{~mL})\left(\frac{1.84 \mathrm{~g}}{1 \mathrm{~mL}}\right)=1.84 \mathrm{~g}$ solution
Mass percent $=\frac{\text { mass of } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { mass of solution }}(100)=\frac{1.79505 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1.84 \mathrm{~g} \text { solution }}(100)=97.5571=\mathbf{9 7 . 6 \%} \mathbf{H}_{2} \mathbf{S O}_{4}$ by mass

Plan: Convert the mass of calcium carbonate to moles, and use the mole ratio in the balanced chemical equation to find the moles of hydrochloric acid required to react with these moles of calcium carbonate. Use the molarity of HCl to find the volume that contains this number of moles.
Solution:
$2 \mathrm{HCl}(a q)+\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
Converting from grams of CaCO_{3} to moles:
Moles of $\mathrm{CaCO}_{3}=\left(16.2 \mathrm{~g} \mathrm{CaCO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100.09 \mathrm{~g} \mathrm{CaCO}_{3}}\right)=0.161854 \mathrm{~mol} \mathrm{CaCO}_{3}$
Converting from moles of CaCO_{3} to moles of HCl :
Moles of $\mathrm{HCl}=\left(0.161854 \mathrm{~mol} \mathrm{CaCO}_{3}\right)\left(\frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}\right)=0.323708 \mathrm{~mol} \mathrm{HCl}$
Converting from moles of HCl to volume:
Volume (mL) of $\mathrm{HCl}=(0.323708 \mathrm{~mol} \mathrm{HCl})\left(\frac{1 \mathrm{~L}}{0.383 \mathrm{~mol} \mathrm{HCl}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=845.1906=\mathbf{8 4 5} \mathbf{~ m L ~ H C l}$ solution

Plan: Convert the volume of NaOH solution to liters and multiply by the molarity of the solution to obtain moles of NaOH . Use the mole ratio in the balanced chemical equation to find the moles of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ required to react with these moles of NaOH . Finally, convert moles of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ to moles.
Solution:
$\mathrm{NaH}_{2} \mathrm{PO}_{4}(s)+2 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
Volume $(\mathrm{L})=(43.74 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)=0.04374 \mathrm{~mL}$
Finding moles of NaOH :
Moles of $\mathrm{NaOH}=(0.04374 \mathrm{~L})\left(\frac{0.285 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}}\right)=0.0124659 \mathrm{~mol} \mathrm{NaOH}$
Converting from moles of NaOH to moles of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$:
Moles of $\mathrm{NaH}_{2} \mathrm{PO}_{4}=(0.0124659 \mathrm{~mol} \mathrm{NaOH})\left(\frac{1 \mathrm{~mol} \mathrm{NaH}_{2} \mathrm{PO}_{4}}{2 \mathrm{~mol} \mathrm{NaOH}}\right)=0.00623295 \mathrm{~mol} \mathrm{NaH} 2 \mathrm{PO}_{4}$
Converting from moles of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ to mass:
Mass (g) of $\mathrm{NaH}_{2} \mathrm{PO}_{4}=\left(0.00623295 \mathrm{~mol} \mathrm{NaH}_{2} \mathrm{PO}_{4}\right)\left(\frac{119.98 \mathrm{~g} \mathrm{NaH}_{2} \mathrm{PO}_{4}}{1 \mathrm{~mol} \mathrm{NaH}} \mathrm{PO}_{4}\right)=0.747829=\mathbf{0 . 7 4 8} \mathbf{g ~ \mathbf { N a H } _ { 2 } \mathbf { P O } _ { 4 }}$
Plan: The first step is to write and balance the chemical equation for the reaction. Multiply the molarity and volume of each of the reactants to determine the moles of each. To determine which reactant is limiting, calculate the amount of barium sulfate formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the mass of barium sulfate formed.
Solution:
The balanced chemical equation is:
$\mathrm{BaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{BaSO}_{4}(s)+2 \mathrm{NaCl}(a q)$

Moles of $\mathrm{BaCl}_{2}=(35.0 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.160 \mathrm{~mol} \mathrm{BaCl}}{2}\right)=0.00560 \mathrm{~mol} \mathrm{BaCl} 2$
Finding the moles of BaSO_{4} from the moles of BaCl_{2} (if $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is limiting):
Moles of BaSO_{4} from $\mathrm{BaCl}_{2}=(0.00560 \mathrm{moL} \mathrm{BaCl} 2)\left(\frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{BaCl}_{2}}\right)=0.00560 \mathrm{~mol} \mathrm{BaSO}_{4}$
Moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}=(58.0 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.065 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}}\right)=0.00377 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$
Finding the moles of BaSO_{4} from the moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (if BaCl_{2} is limiting):
Moles BaSO_{4} from $\mathrm{Na}_{2} \mathrm{SO}_{4}=\left(0.00377 \mathrm{moL} \mathrm{Na}_{2} \mathrm{SO}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}\right)=0.00377 \mathrm{~mol} \mathrm{BaSO}_{4}$
Sodium sulfate is the limiting reactant.
Converting from moles of BaSO_{4} to mass:
Mass (g) of $\mathrm{BaSO}_{4}=(0.0377 \mathrm{moL} \mathrm{BaSO} 4)\left(\frac{233.4 \mathrm{~g} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}}\right)=0.879918=\mathbf{0 . 8 8} \mathbf{g ~ B a S O} 4$
3.77 Plan: The first step is to write and balance the chemical equation for the reaction. Use the molarity and volume of each of the reactants to determine the moles of each. To determine which reactant is limiting, calculate the amount of either product formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of the excess reactant that reacts. The difference between the amount of excess reactant that reacts and the initial amount of reactant supplied gives the amount of excess reactant remaining.
Solution:
The balanced chemical equation is:
$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NaOH}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)$
We can use either product to determine the limiting reactant. We will use sodium sulfate.
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=(350.0 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.210 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L}}\right)=0.0735 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
Finding the moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ from the moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (if NaOH is limiting):
Moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ from $\mathrm{H}_{2} \mathrm{SO}_{4}=\left(0.0735 \mathrm{moL} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right)=0.0735 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$
Moles of $\mathrm{NaOH}=(0.500 \mathrm{~L})\left(\frac{0.196 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}}\right)=0.0980 \mathrm{~mol} \mathrm{NaOH}$
Finding the moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ from the moles of NaOH (if $\mathrm{H}_{2} \mathrm{SO}_{4}$ is limiting):
Moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ from $\mathrm{NaOH}=(0.0980 \mathrm{~mol} \mathrm{NaOH})\left(\frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{NaOH}}\right)=0.0490 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$
NaOH is the limiting reactant and will be used in the remainder of the calculations.
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that react with $\mathrm{NaOH}=(0.0980 \mathrm{~mol} \mathrm{NaOH})\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{NaOH}}\right)=0.0490 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remaining = initial moles - moles reacting with NaOH

$$
=0.0735 \mathrm{~mol}-0.0490 \mathrm{~mol}=\mathbf{0 . 0 2 4 5} \mathbf{~ m o l ~ H} \mathbf{H}_{2} \mathbf{S O}_{4}
$$

Plan: The first part of the problem is a simple dilution problem ($M_{1} V_{1}=M_{2} V_{2}$). The volume in units of gallons can be used. In part b), convert mass of HCl to moles and use the molarity to find the volume that contains that number of moles.

Solution:
a) $M_{1}=11.7 \mathrm{M}$
$V_{1}=$?
$M_{2}=3.5 \mathrm{M}$
$V_{2}=3.0 \mathrm{gal}$
$V_{1}=\frac{M_{2} \times V_{2}}{M_{1}}=\frac{(3.5 \mathrm{M})(3.0 \mathrm{gal})}{11.7 \mathrm{M}}=0.897436 \mathrm{gal}$

Instructions: Be sure to wear goggles to protect your eyes! Pour approximately 2.0 gal of water into the container. Add slowly and with mixing 0.90 gal of 11.7 M HCl into the water. Dilute to 3.0 gal with water.
b) Converting from mass of HCl to moles of HCl :

Moles of $\mathrm{HCl}=(9.66 \mathrm{~g} \mathrm{HCl})\left(\frac{1 \mathrm{~mol} \mathrm{HCl}}{36.46 \mathrm{~g} \mathrm{HCl}}\right)=0.264948 \mathrm{~mol} \mathrm{HCl}$
Converting from moles of HCl to volume:
Volume (mL) of solution $=(0.264948 \mathrm{~mol} \mathrm{HCl})\left(\frac{1 \mathrm{~L}}{11.7 \mathrm{~mol} \mathrm{HCl}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)$

$$
=22.64513=22.6 \mathbf{m L} \text { muriatic acid solution }
$$

Plan: The moles of narceine and the moles of water are required. We can assume any mass of narceine hydrate (we will use 100 g), and use this mass to determine the moles of hydrate. The moles of water in the hydrate is obtained by taking 10.8% of the 100 g mass of hydrate and converting the mass to moles of water. Divide the moles of water by the moles of hydrate to find the value of x .
Solution:
Assuming a 100 g sample of narceine hydrate:
Moles of narceine hydrate $=(100 \mathrm{~g}$ narceine hydrate $)\left(\frac{1 \mathrm{~mol} \text { narceine hydrate }}{499.52 \mathrm{~g} \text { narceine hydrate }}\right)$ $=0.20019 \mathrm{~mol}$ narceine hydrate
Mass (g) of $\mathrm{H}_{2} \mathrm{O}=(100 \mathrm{~g}$ narceine hydrate $)\left(\frac{10.8 \% \mathrm{H}_{2} \mathrm{O}}{100 \% \text { narceine hydrate }}\right)=10.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Moles of $\mathrm{H}_{2} \mathrm{O}=\left(10.8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=0.59933 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$x=\frac{\text { moles of } \mathrm{H}_{2} \mathrm{O}}{\text { moles of hydrate }}=\frac{0.59933 \mathrm{~mol}}{0.20019 \mathrm{~mol}}=3$
Thus, there are three water molecules per mole of hydrate. The formula for narceine hydrate is narceine• $3 \mathbf{H}_{2} \mathbf{O}$.
Plan: Determine the formula and the molar mass of each compound. The formula gives the relative numbers of moles of each element present. Multiply the number of moles of each element by its molar mass to find the total mass of element in 1 mole of compound. Mass percent $=\frac{\text { total mass of element }}{\text { molar mass of compound }}(100)$. List the compounds from the highest \%H to the lowest.
Solution:

Name	Chemical formula	Molar mass $(\mathrm{g} / \mathrm{mol})$	Mass percent $\mathrm{H}=\frac{\text { moles of } \mathrm{H} \text { x molar mass }}{\text { molar mass of compound }}(100)$
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	30.07	$\frac{6 \mathrm{~mol}(1.008 \mathrm{~g} / \mathrm{mol})}{30.07 \mathrm{~g}}(100)=20.11 \% \mathrm{H}$
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.09	$\frac{8 \mathrm{~mol}(1.008 \mathrm{~g} / \mathrm{mol})}{44.09 \mathrm{~g}}(100)=18.29 \% \mathrm{H}$
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.11	$\frac{6 \mathrm{~mol}(1.008 \mathrm{~g} / \mathrm{mol})}{78.11 \mathrm{~g}}(100)=7.743 \% \mathrm{H}$

Ethanol
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
46.07
Cetyl palmitate
$\mathrm{C}_{32} \mathrm{H}_{64} \mathrm{O}_{2}$
480.83

$$
\begin{aligned}
& \frac{6 \mathrm{~mol}(1.008 \mathrm{~g} / \mathrm{mol})}{46.07 \mathrm{~g}}(100)=13.13 \% \mathrm{H} \\
& \frac{64 \mathrm{~mol}(1.008 \mathrm{~g} / \mathrm{mol})}{480.83 \mathrm{~g}}(100)=13.42 \% \mathrm{H}
\end{aligned}
$$

The hydrogen percentage decreases in the following order:

Ethane > Propane > Cetyl palmitate > Ethanol > Benzene

3.81 Plan: The names must first be converted to chemical formulas. Balancing is a trial-and-error procedure. Balance one element at a time, placing coefficients where needed to have the same number of atoms of a particular element on each side of the equation. The smallest whole-number coefficients should be used. Remember that oxygen, chlorine, and hydrogen are diatomic.
Solution:
a) All of the substances are gases.
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
There are 2 O atoms in O_{2} on the left and 3 O atoms in SO_{2} and $\mathrm{H}_{2} \mathrm{O}$ on the right; place a coefficient of 2 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right and a coefficient of 2 in front of O_{2} on the left for a total of 4 oxygen atoms on each side:
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Now the 4 H atoms in $2 \mathrm{H}_{2} \mathrm{O}$ on the right require a coefficient of 2 in front of $\mathrm{H}_{2} \mathrm{~S}$ on the left:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 2 S atoms in $2 \mathrm{H}_{2} \mathrm{~S}$ on the left require a coefficient of 2 in front of SO_{2} on the right:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Now the O atoms are no longer balanced; the 6 O atoms on the right (4 in $2 \mathrm{SO}_{2}$ and 2 in $2 \mathrm{H}_{2} \mathrm{O}$) require a coefficient of 6 in front of O_{2} on the left:
$\mathbf{2} \mathbf{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathbf{3 \mathrm { O } _ { 2 }}(\mathrm{g}) \xrightarrow{\Delta} \mathbf{2} \mathrm{SO}_{2}(\mathrm{~g})+\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b) All of the substances are solid (crystalline).
$\mathrm{KClO}_{3}(s) \xrightarrow{\Delta} \mathrm{KCl}(s)+\mathrm{KClO}_{4}(s)$
There are 3 O atoms in KClO_{3} on the left and 4 O atoms in KClO_{4} on the right. Place a coefficient of 4 in front of KClO_{3} and a coefficient of 3 in front of KClO_{4} for a total of 12 O atoms on each side. The K and Cl atoms are balanced with 4 K atoms and 4 Cl atoms on each side:
$4 \mathrm{KClO}_{3}(s) \xrightarrow{\Delta} \mathbf{K C l}(s)+3 \mathrm{KClO}_{4}(s)$
c) Hydrogen and water vapor are gases; iron and iron(III) oxide are solids.
$\mathrm{H}_{2}(g)+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(g)$
The 2 Fe atoms in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ on the left require a coefficient of 2 in front of Fe on the right:
$\mathrm{H}_{2}(g)+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 3 O atoms in $\mathrm{Fe}_{2} \mathrm{O}_{3}$ on the left require a coefficient of 3 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 6 H atoms in $3 \mathrm{H}_{2} \mathrm{O}$ on the right require a coefficient of 3 in front of H_{2} on the left:
$\mathbf{3 H} \mathbf{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathbf{2 F e}(\mathrm{s})+\mathbf{3} \mathrm{H}_{2} \mathbf{O}(\mathrm{~g})$
d) All of the substances are gases; combustion required oxygen as a reactant.
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 2 C atoms in $\mathrm{C}_{2} \mathrm{H}_{6}$ on the left require a coefficient of 2 in front of CO_{2} on the right:
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 6 H atoms in $\mathrm{C}_{2} \mathrm{H}_{6}$ on the left require a coefficient of 3 in front of $\mathrm{H}_{2} \mathrm{O}$ on the right:
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The 7 O atoms on the right (4 in $2 \mathrm{CO}_{2}$ and 3 in $3 \mathrm{H}_{2} \mathrm{O}$) require a coefficient of $7 / 2$ in front of O_{2} on the left:
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Double all coefficients to get whole number coefficients:
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} 4 \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{6} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e) Iron(II) chloride and iron(III) fluoride are solids and the other substances are gases.
$\mathrm{FeCl}_{2}(\mathrm{~s})+\mathrm{ClF}_{3}(g) \rightarrow \mathrm{FeF}_{3}(\mathrm{~s})+\mathrm{Cl}_{2}(g)$
There are 3 Cl atoms on the left (2 in FeCl_{2} and 1 in ClF_{3}) and 2 Cl atoms in Cl_{2} on the right. Place a coefficient of 2 in front of Cl_{2} and a coefficient of 2 in front of ClF_{3} on the left for a total of 4 Cl atoms on each side:
$\mathrm{FeCl}_{2}(s)+2 \mathrm{ClF}_{3}(g) \rightarrow \mathrm{FeF}_{3}(s)+2 \mathrm{Cl}_{2}(g)$
The 6 F atoms in $2 \mathrm{ClF}_{3}$ require a coefficient of 2 in front of FeF_{3} on the right:
$\mathrm{FeCl}_{2}(s)+2 \mathrm{ClF}_{3}(g) \rightarrow 2 \mathrm{FeF}_{3}(\mathrm{~s})+2 \mathrm{Cl}_{2}(g)$
The 2 Fe atoms in FeF_{3} on the right require a coefficient of 2 in front of FeCl_{2} on the left:
$2 \mathrm{FeCl}_{2}(s)+2 \mathrm{ClF}_{3}(g) \rightarrow 2 \mathrm{FeF}_{3}(s)+2 \mathrm{Cl}_{2}(g)$
Now the Cl atoms are not balanced with 6 on the left (4 in $2 \mathrm{FeCl}_{2}$ and 2 in $2 \mathrm{ClF}_{3}$) and 4 in $2 \mathrm{Cl}_{2}$ on the right;
place
a coefficient of 3 in front of Cl_{2} on the right:
$2 \mathrm{FeCl}_{2}(s)+2 \mathrm{CIF}_{3}(g) \rightarrow 2 \mathrm{FeF}_{3}(s)+3 \mathrm{Cl}_{2}(g)$
3.82 Plan: In combustion analysis, finding the moles of carbon and hydrogen is relatively simple because all of the carbon present in the sample is found in the carbon of CO_{2}, and all of the hydrogen present in the sample is found in the hydrogen of $\mathrm{H}_{2} \mathrm{O}$. Convert the mass of CO_{2} to moles and use the ratio between CO_{2} and C to find the moles and mass of C present. Do the same to find the moles and mass of H from $\mathrm{H}_{2} \mathrm{O}$. Divide the moles of C and H by the smaller value to convert to whole numbers to get the empirical formula.
Solution:
Isobutylene $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Moles of $\mathrm{C}=\left(2.657 \mathrm{~g} \mathrm{CO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}^{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)=0.06037 \mathrm{~mol} \mathrm{C}$
Moles of $\mathrm{H}=\left(1.089 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.1209 \mathrm{~mol} \mathrm{H}$
Preliminary formula $=\mathrm{C}_{0.06037} \mathrm{H}_{0.1209}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{C}_{\frac{0.06037}{0.06037}} \mathrm{H}_{\frac{0.1209}{0.06037}} \rightarrow \mathrm{C}_{1} \mathrm{H}_{2}
$$

This gives an empirical formula of $\mathbf{C H}_{2}$.
3.83 Plan: Write a balanced equation. Use the density of toluene to convert the given volume of toluene to mass and divide by the molar mass of toluene to convert mass to moles. Use the mole ratio between toluene and oxygen to find the moles and then mass of oxygen required for the reaction. The mole ratio between toluene and the gaseous products are used to find the moles of product produced. The moles of water are multiplied by Avogadro's number to find the number of water molecules.
Solution:
The balanced chemical equation is:
$\mathrm{C}_{7} \mathrm{H}_{8}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
a) Moles of $\mathrm{C}_{7} \mathrm{H}_{8}=\left(20.0 \mathrm{~mL} \mathrm{C}_{7} \mathrm{H}_{8}\right)\left(\frac{0.867 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{8}}{1 \mathrm{~mL} \mathrm{C}_{7} \mathrm{H}_{8}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}}{92.13 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{8}}\right)=0.1882123 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}$

Mass (g) oxygen $=\left(0.1882123 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}\right)\left(\frac{9 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}}\right)\left(\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=54.20514=54.2 \mathbf{g ~ O}_{2}$
b) Total moles of gas $=\left(0.1882123 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}\right)\left(\frac{11 \mathrm{~mol} \text { product gas }}{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}}\right)=2.07034=\mathbf{2 . 0 7} \mathbf{~ m o l}$ of gas

The 11 mol of gas is an exact, not measured, number, so it does not affect the significant figures.
c) Moles of $\mathrm{H}_{2} \mathrm{O}=\left(0.1882123 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}\right)\left(\frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{8}}\right)=0.7528492 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$

$$
\text { Molecules of } \begin{aligned}
\mathrm{H}_{2} \mathrm{O} & =\left(0.7528492 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right) \\
& =4.53366 \times 10^{23}=4.53 \times 1 \mathbf{x}^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Plan: If 100.0 g of dinitrogen tetroxide reacts with 100.0 g of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$, what is the theoretical yield of nitrogen if no side reaction takes place? First, we need to identify the limiting reactant. To determine which reactant is limiting, calculate the amount of nitrogen formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the theoretical yield of nitrogen. Then determine the amount of limiting reactant required to produce 10.0 grams of NO. Reduce the amount of limiting reactant by the amount used to produce NO. The reduced amount of limiting reactant is then used to calculate an "actual yield." The "actual" and theoretical yields will give the maximum percent yield.
Solution:
The balanced reaction is $2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 3 \mathrm{~N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
Determining the limiting reactant:
Finding the moles of N_{2} from the amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ (if $\mathrm{N}_{2} \mathrm{H}_{4}$ is limiting):
Moles of N_{2} from $\mathrm{N}_{2} \mathrm{O}_{4}=\left(100.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}\right)=3.26016 \mathrm{~mol} \mathrm{~N}$
Finding the moles of N_{2} from the amount of $\mathrm{N}_{2} \mathrm{H}_{4}$ (if $\mathrm{N}_{2} \mathrm{O}_{4}$ is limiting):
N_{2} from $\mathrm{N}_{2} \mathrm{H}_{4}=\left(100.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}{32.05 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}\right)=4.68019 \mathrm{~mol} \mathrm{~N}_{2}$
$\mathrm{N}_{2} \mathrm{O}_{4}$ is the limiting reactant.
Theoretical yield of $\mathrm{N}_{2}=\left(100.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}\right)\left(\frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}\right)=91.3497 \mathrm{~g} \mathrm{~N}_{2}$
How much of the limiting reactant is used to produce 10.0 g NO ?
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 6 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Mass (g) of $\mathrm{N}_{2} \mathrm{O}_{4}$ used $=(10.0 \mathrm{~g} \mathrm{NO})\left(\frac{1 \mathrm{~mol} \mathrm{NO}}{30.01 \mathrm{~g} \mathrm{NO}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~N}}{2} \mathrm{O}_{4}\right)\left(\frac{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}{6 \mathrm{~mol} \mathrm{NO}}\right)\left(\mathrm{mol} \mathrm{N}_{2} \mathrm{O}_{4}\right)$

$$
=10.221 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}
$$

Amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ available to produce $\mathrm{N}_{2}=100.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$ - mass of $\mathrm{N}_{2} \mathrm{O}_{4}$ required to produce 10.0 g NO

$$
=100.0 \mathrm{~g}-10.221 \mathrm{~g}=89.779 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}
$$

Determine the "actual yield" of N_{2} from $89.779 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}$:

$$
\left.\begin{array}{rl}
\text { "Actual yield" of } \mathrm{N}_{2} & =\left(89.779 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{~N}}{2}\right. \\
1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}
\end{array}\right)\left(\frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}\right)
$$

Theoretical yield $=\left(\frac{\text { actual yield }}{\text { theoretical yield }}\right)(100)=\left(\frac{82.01285}{91.3497}\right)(100)=89.7790=\mathbf{8 9 . 8 \%}$

Plan: Identify the product molecules and write the balanced equation. To determine the limiting reactant for part b), examine the product circle to see which reactant remains in excess and which reactant was totally consumed. For part c), use the mole ratios in the balanced equation to determine the number of moles of product formed by each reactant, assuming the other reactant is in excess. The reactant that produces fewer moles of product is the limiting reactant. Use the mole ratio between the two reactants to determine the moles of excess reactant required to react with the limiting reactant. The difference between the initial moles of excess reactant and the moles required for reaction is the moles of excess reactant that remain.
Solution:
a) The contents of the circles give:

$$
\mathrm{AB}_{2}+\mathrm{B}_{2} \rightarrow \mathrm{AB}_{3}
$$

Balancing the reaction gives:

$$
2 \mathrm{AB}_{2}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}_{3}
$$

b) Two B_{2} molecules remain after reaction so B_{2} is in excess. All of the $A B_{2}$ molecules have reacted so $\mathbf{A B}$. is the limiting reactant.
c) Finding the moles of AB_{3} from the moles of AB_{2} (if B_{2} is limiting):

Moles of AB_{3} from $\mathrm{AB}_{2}=\left(5.0 \mathrm{~mol} \mathrm{AB}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{AB}_{3}}{2 \mathrm{~mol} \mathrm{AB}_{2}}\right)=5.0 \mathrm{~mol} \mathrm{AB} 3$
Finding the moles of AB_{3} from the moles of B_{2} (if AB_{2} is limiting):
Moles of AB_{3} from $\mathrm{B}_{2}=\left(3.0 \mathrm{~mol} \mathrm{~B}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{AB}_{3}}{1 \mathrm{~mol} \mathrm{~B}_{2}}\right)=6.0 \mathrm{~mol} \mathrm{AB}$
$A B_{2}$ is the limiting reagent and $\mathbf{5 . 0} \mathbf{~ m o l}$ of $\mathbf{A B}_{3}$ is formed.
d) Moles of B_{2} that react with $5.0{\mathrm{~mol} \mathrm{AB}_{2}=(5.0 \mathrm{~mol} \mathrm{AB}}_{2})\left(\frac{1 \mathrm{~mol} \mathrm{~B}_{2}}{2 \mathrm{~mol} \mathrm{AB}_{2}}\right)=2.5 \mathrm{~mol} \mathrm{~B}_{2}$

The unreacted B_{2} is $3.0 \mathrm{~mol}-2.5 \mathrm{~mol}=\mathbf{0 . 5} \mathbf{~ m o l ~} \mathbf{B}_{2}$.

Plan: Since 85% of ions in seawater are from NaCl , take 85% of the mass percent of dissolved ions (4.0\%) to find the mass $\%$ of NaCl in part a). To find the mass $\%$ of Na^{+}and Cl^{-}individually in part b), use the ratio of the mass of the two ions to the mass of NaCl . To find the molarity in part c), use the mass of NaCl in 100 g of seawater; convert mass of NaCl to moles and mass of seawater to volume in liters, using the density. Molarity = moles of $\mathrm{NaCl} / \mathrm{L}$ of seawater.
Solution:
a) $(4.0 \%$ ions $)\left(\frac{85 \% \mathrm{NaCl}}{100 \% \text { ions }}\right)=3.4 \% \mathrm{NaCl}$
b) $\% \mathrm{Na}^{+}$ions $=(3.4 \% \mathrm{NaCl})\left(\frac{22.99 \mathrm{~g} \mathrm{Na}^{+}}{58.44 \mathrm{~g} \mathrm{NaCl}}\right)=1.3375=\mathbf{1 . 3} \% \mathbf{N a}^{+}$ions $\% \mathrm{Cl}^{-}$ions $=(3.4 \% \mathrm{NaCl})\left(\frac{35.45 \mathrm{~g} \mathrm{Cl}^{-}}{58.44 \mathrm{~g} \mathrm{NaCl}}\right)=2.062=\mathbf{2 . 1} \% \mathrm{Cl}^{-}$ions
c) Since the mass $\%$ of NaCl is 3.4%, there are 3.4 g of NaCl in 100 g of seawater.

Moles of $\mathrm{NaCl}=(3.4 \mathrm{~g} \mathrm{NaCl})\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}\right)=0.0581793 \mathrm{~mol} \mathrm{NaCl}$
Volume (L) of 100 g of seawater $=(100 \mathrm{~g}$ seawater $)\left(\frac{1 \mathrm{~mL}}{1.025 \mathrm{~g} \text { seawater }}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)=0.097561 \mathrm{~L}$
$M \mathrm{NaCl}=\frac{\text { moles } \mathrm{NaCl}}{\mathrm{L} \text { seawater }}=\frac{0.0581793 \mathrm{~mol}}{0.097561 \mathrm{~L}}=0.596338=\mathbf{0 . 6 0} \mathbf{M ~ N a C l}$
a) False, a mole of one substance has the same number of units as a mole of any other substance.
b) True
c) False, a limiting-reactant problem is present when the quantity of available material is given for more than one reactant.
d) True

Plan: Count the total number of spheres in each box. The number in box A divided by the volume change in each part will give the number we are looking for and allow us to match boxes.
Solution:
The number in each box is: $\mathrm{A}=12, \mathrm{~B}=6, \mathrm{C}=4$, and $\mathrm{D}=3$.
a) When the volume is tripled, there should be $12 / 3=4$ spheres in a box. This is box \mathbf{C}.
b) When the volume is doubled, there should be $12 / 2=6$ spheres in a box. This is box \mathbf{B}.
c) When the volume is quadrupled, there should be $12 / 4=3$ spheres in a box. This is box \mathbf{D}.

Plan: To convert mass to moles, divide the mass by the molar mass of the substance. To convert moles to mass, divide by the molar mass. To obtain number of particles, multiply moles by Avogadro's number. Divide a number of particles by Avogadro's number to obtain moles.
Solution:
a) Since 1 mole of any substance contains Avogadro's number of entities, equal amounts of moles of various substances contain equal numbers of entities. The number of entities (O_{3} molecules) in 0.4 mol of O_{3} is equal to the number of entities (O atoms) in 0.4 mol of O atoms.
b) O_{3} has a molar mass of $3(16.0 \mathrm{~g} / \mathrm{mol} \mathrm{O})=48.0 \mathrm{~g} / \mathrm{mol}$; O has a molar mass of $1(16.0 \mathrm{~g} / \mathrm{mol} \mathrm{O})=16.0 \mathrm{~g} / \mathrm{mol}$. Since O_{3} has a larger molar mass than $\mathrm{O}, \mathbf{0 . 4} \mathbf{~ m o l}$ of $\mathbf{O}_{\mathbf{3}}$ has a greater mass than 0.4 mol of O .
c) Moles of $\mathrm{N}_{2} \mathrm{O}_{4}=\left(4.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.02 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}\right)=0.043 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}_{4}$

Moles of $\mathrm{SO}_{2}=\left(3.3 \mathrm{~g} \mathrm{SO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{64.07 \mathrm{~g} \mathrm{SO}_{2}}\right)=0.052 \mathrm{~mol} \mathrm{SO}_{2}$
$\mathbf{S O}_{\mathbf{2}}$ is the larger quantity in terms of moles.
d) Mass (g) of $\mathrm{C}_{2} \mathrm{H}_{4}=\left(0.6 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\frac{28.05 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}}\right)=17 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}$

Mass (g) of $\mathrm{F}_{2}=\left(0.6 \mathrm{~mol} \mathrm{~F}_{2}\right)\left(\frac{38.00 \mathrm{~g} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~F}_{2}}\right)=23 \mathrm{~g} \mathrm{~F}_{2}$
\mathbf{F}_{2} is the greater quantity in terms of mass.
Note that if each of these values is properly rounded to one significant figure, the answers are identical.
e) Total moles of ions in $2.3 \mathrm{~mol} \mathrm{NaClO}_{3}=\left(2.3 \mathrm{~mol} \mathrm{NaClO}_{3}\right)\left(\frac{2 \mathrm{~mol} \text { ions }}{1 \mathrm{~mol} \mathrm{NaClO}_{3}}\right)=4.6 \mathrm{~mol}$ ions

Total moles of ions in $2.2 \mathrm{~mol} \mathrm{MgCl}_{2}=\left(2.2 \mathrm{~mol} \mathrm{MgCl}_{2}\right)\left(\frac{3 \mathrm{~mol} \mathrm{ions}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}\right)=6.6 \mathrm{~mol}$ ions
$\mathbf{M g C l} \mathbf{2}_{\mathbf{2}}$ is the greater quantity in terms of total moles of ions.
f) The compound with the lower molar mass will have more molecules in a given mass. $\mathrm{H}_{2} \mathrm{O}(18.02 \mathrm{~g} / \mathrm{mol})$ has a lower molar mass than $\mathrm{H}_{2} \mathrm{O}_{2}(34.02 \mathrm{~g} / \mathrm{mol})$. $1.0 \mathbf{g ~ H}_{2} \mathbf{O}$ has more molecules than $1.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$.
g) Moles of $\mathrm{NaBr}=(0.500 \mathrm{~L} \mathrm{NaBr})\left(\frac{0.500 \mathrm{~mol}}{1 \mathrm{~L}}\right)=0.250 \mathrm{~mol} \mathrm{NaBr}$

Moles of $\mathrm{Na}^{+}=(0.250 \mathrm{~mol} \mathrm{NaBr})\left(\frac{1 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{NaBr}}\right)=0.250 \mathrm{~mol} \mathrm{Na}^{+}$
Moles of $\mathrm{NaCl}=(0.0146 \mathrm{~kg} \mathrm{NaCl})\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}\right)=0.250 \mathrm{~mol} \mathrm{NaCl}$
Moles of $\mathrm{Na}^{+}=(0.250 \mathrm{~mol} \mathrm{NaCl})\left(\frac{2 \mathrm{~mol} \mathrm{ions}}{1 \mathrm{~mol} \mathrm{NaCl}}\right)=0.250 \mathrm{~mol} \mathrm{Na}^{+}$
The two quantities are equal.
h) The heavier atoms, ${ }^{238} \mathbf{U}$, will give a greater total mass since there is an equal number of particles of both.

Plan: Write a balanced equation. The coefficients in the balanced equation give the number of molecules or moles of each reactant and product. Moles are converted to amount in grams by multiplying by the molar masses. Solution:
$\mathrm{P}_{4} \mathrm{~S}_{3}(\mathrm{~s})+8 \mathrm{O}_{2}(g) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s)+3 \mathrm{SO}_{2}(g)$
a) 1 molecule of $\mathrm{P}_{4} \mathrm{~S}_{3}$ reacts with 8 molecules of O_{2} to produce 1 molecule of $\mathrm{P}_{4} \mathrm{O}_{10}$ and 3 molecules of SO_{2}.
b) 1 mol of $\mathrm{P}_{4} \mathrm{~S}_{3}$ reacts with 8 mol of O_{2} to produce 1 mol of $\mathrm{P}_{4} \mathrm{O}_{10}$ and 3 mol of SO_{2}.
c) 220.09 g of $\mathrm{P}_{4} \mathrm{~S}_{3}$ react with $8(32.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=256.00 \mathrm{~g}$ of O_{2} to produce $283.88 \mathrm{~g} \mathrm{of} \mathrm{P}_{4} \mathrm{O}_{10}$ and $3\left(64.07 \mathrm{~g} / \mathrm{mol} \mathrm{SO}_{2}\right)=192.21 \mathrm{~g}$ of SO_{2}.

Plan: Write a balanced equation. Use the actual yield (105 kg) and the percent yield (98.8%) to find the theoretical yield of hydrogen. Use the mole ratio between hydrogen and water in the balanced equation to obtain the amount of hydrogen required to produce that theoretical yield of water.
Solution:
The balanced equation is $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\%$ yield $=\left(\frac{\text { actual yield }}{\text { theoretical yield }}\right) \times 100 \%$
Theoretical yield (g) of $\mathrm{H}_{2} \mathrm{O}=\frac{\text { actual yield }}{\% \text { yield }}(100)=\frac{105 \mathrm{~kg}}{98.8 \%}(100)=106.2753 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$

$$
\text { Mass } \begin{aligned}
(\mathrm{g}) \text { of } \mathrm{H}_{2} & =\left(106.2753 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2.016 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}\right) \\
& =1.18896 \times 10^{4}=\mathbf{1 . 1 9 \times 1 0 ^ { 4 } \mathbf { g ~ H } _ { 2 }}
\end{aligned}
$$

Plan: This problem may be done as two dilution problems with the two final molarities added, or, as done here, it may be done by calculating, then adding the moles and dividing by the total volume.
Solution:
$M \mathrm{KBr}=\frac{\text { total moles } \mathrm{KBr}}{\text { total volume }}=\frac{\text { moles } \mathrm{KBr} \text { from solution } 1+\text { moles } \mathrm{KBr} \text { from solution } 2}{\text { volume solution } 1+\text { volume solution } 2}$
$M \mathrm{KBr}=\frac{\left(\frac{0.053 \mathrm{~mol} \mathrm{KBr}}{1 \mathrm{~L}}\right)(0.200 \mathrm{~L})+\left(\frac{0.078 \mathrm{~mol} \mathrm{KBr}}{1 \mathrm{~L}}\right)(0.550 \mathrm{~L})}{0.200 \mathrm{~L}+0.550 \mathrm{~L}}=0.071333=\mathbf{0 . 0 7 1 ~ M ~ K B r}$

Plan: Divide the given mass of a substance by its molar mass to obtain moles; multiply the given moles of a substance by its molar mass to obtain mass in grams. Number of particles is obtained by multiplying an amount in moles by Avogadro's number. Density is used to convert mass to volume.
Solution:
a) Moles of $\mathrm{NH}_{4} \mathrm{Br}=\left(0.588 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Br}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{Br}}{97.94 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Br}}\right)=0.0060037=\mathbf{0 . 0 0 6 0 0} \mathbf{~ m o l ~ N H}_{4} \mathbf{B r}$
b) Moles of $\mathrm{KNO}_{3}=\left(88.5 \mathrm{~g} \mathrm{KNO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{KNO}_{3}}{101.11 \mathrm{~g} \mathrm{KNO}_{3}}\right)=0.875284 \mathrm{~mol} \mathrm{KNO}_{3}$

Number of K^{+}ions $=\left(0.875284 \mathrm{~mol} \mathrm{KNO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{~mol} \mathrm{KNO}_{3}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{~K}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{~K}^{+}}\right)$

$$
=5.27096 \times 10^{23}=5.27 \times 10^{23} \mathbf{K}^{+} \text {ions }
$$

c) Mass (g) of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}=\left(5.85 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)\left(\frac{92.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}}\right)=538.7265=539 \mathbf{g ~ C}_{3} \mathbf{H}_{8} \mathbf{O}_{\mathbf{3}}$
d) Mass (g) of $\mathrm{CHCl}_{3}=\left(2.85 \mathrm{~mol} \mathrm{CHCl}_{3}\right)\left(\frac{119.37 \mathrm{~g} \mathrm{CHCl}_{3}}{1 \mathrm{~mol} \mathrm{CHCl}_{3}}\right)=340.2045 \mathrm{~g} \mathrm{CHCl}_{3}$

Volume (mL) of $\mathrm{CHCl}_{3}=\left(340.2045 \mathrm{~g} \mathrm{CHCl}_{3}\right)\left(\frac{\mathrm{mL}}{1.48 \mathrm{~g} \mathrm{CHCl}_{3}}\right)=229.868=\mathbf{2 3 0} \mathbf{.} \mathbf{~ m L} \mathbf{C H C l}_{\mathbf{3}}$
e) Moles of $\mathrm{Na}^{+}=\left(2.11 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}\right)=4.22 \mathrm{~mol} \mathrm{Na}^{+}$

Number of $\mathrm{Na}^{+}=(4.22 \mathrm{~mol} \mathrm{Na}+)\left(\frac{6.022 \times 10^{23} \mathrm{Na}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{Na}^{+}}\right)=2.54128 \times 10^{24}=\mathbf{2 . 5 4 \times 1 0 ^ { 2 4 }} \mathbf{N a}^{+}$ions
f) Moles of Cd atoms $=(25.0 \mu \mathrm{~g} \mathrm{Cd})\left(\frac{10^{-6} \mathrm{~g}}{1 \mu \mathrm{~g}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cd}}{112.4 \mathrm{~g} \mathrm{Cd}}\right)=2.224199 \times 10^{-7} \mathrm{~mol} \mathrm{Cd}$ atoms

Number of Cd atoms $=\left(2.224199 \times 10^{-7} \mathrm{~mol} \mathrm{Cd}\right)\left(\frac{6.022 \times 10^{23} \mathrm{Cd} \text { atoms }}{1 \mathrm{~mol} \mathrm{Cd}}\right)$
$=1.3394126 \times 10^{17}=\mathbf{1 . 3 4 \times 1 0 ^ { 1 7 }} \mathbf{C d}$ atoms
g) Number of F atoms $=\left(0.0015 \mathrm{~mol} \mathrm{~F}_{2}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{~F}_{2}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{~F} \text { atoms }}{1 \mathrm{~mol} \mathrm{~F}}\right)$

$$
=1.8066 \times 10^{21}=\mathbf{1 . 8 \times 1 0} \mathbf{0}^{21} \mathbf{F} \text { atoms }
$$

3.94 Neither A nor B has any XY_{3} molecules. Both C and D have XY_{3} molecules. D shows both XY_{3} and XY molecules. Only C has a single XY_{3} product, thus the answer is \mathbf{C}.

Plan: Deal with the methane and propane separately, and combine the results. Balanced equations are needed for each hydrocarbon. The total mass and the percentages will give the mass of each hydrocarbon. The mass of each hydrocarbon is changed to moles, and through the balanced chemical equation the amount of CO_{2} produced by each gas may be found. Summing the amounts of CO_{2} gives the total from the mixture. For part b), let x and 252 - x represent the masses of CH_{4} and $\mathrm{C}_{3} \mathrm{H}_{8}$, respectively.
Solution:
a) The balanced chemical equations are:

$$
\begin{array}{ll}
\text { Methane: } & \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \\
\text { Propane: } & \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)
\end{array}
$$

Mass (g) of CO_{2} from each:

$$
\begin{aligned}
& \text { Methane: }(200 . \mathrm{g} \mathrm{Mixture})\left(\frac{25.0 \%}{100 \%}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)\left(\frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)=137.188 \mathrm{~g} \mathrm{CO}_{2} \\
& \text { Propane: }\left(200 . \mathrm{g} \mathrm{Mixture)}^{2}\left(\frac{75.0 \%}{100 \%}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(\frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)=449.183 \mathrm{~g} \mathrm{CO}_{2}\right.
\end{aligned}
$$

Total $\mathrm{CO}_{2}=137.188 \mathrm{~g}+449.183 \mathrm{~g}=586.371=\mathbf{5 8 6} \mathrm{g} \mathrm{CO}_{2}$
b) Since the mass of $\mathrm{CH}_{4}+$ the mass of $\mathrm{C}_{3} \mathrm{H}_{8}=252 \mathrm{~g}$, let $\mathrm{x}=$ mass of CH_{4} in the mixture and $252-\mathrm{x}=$ mass of $\mathrm{C}_{3} \mathrm{H}_{8}$ in the mixture. Use mole ratios to calculate the amount of CO_{2} formed from x amount of CH_{4} and the amount of CO_{2} formed from $252-\mathrm{x}$ amount of $\mathrm{C}_{3} \mathrm{H}_{8}$.
The total mass of CO_{2} produced $=748 \mathrm{~g}$.
The total moles of CO_{2} produced $=\left(748 \mathrm{~g} \mathrm{CO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)=16.996 \mathrm{~mol} \mathrm{CO}_{2}$
$16.996 \mathrm{~mol} \mathrm{CO}_{2}=$
$\left(\mathrm{x} \mathrm{CH}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)+\left(252-\mathrm{xg} \mathrm{C}_{3} \mathrm{H}_{8}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(\frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}\right)$
$16.996 \mathrm{~mol} \mathrm{CO}_{2}=\frac{\mathrm{x}}{16.04} \mathrm{~mol} \mathrm{CO}_{2}+\frac{3(252-\mathrm{x})}{44.09} \mathrm{~mol} \mathrm{CO}_{2}$
$16.996 \mathrm{~mol} \mathrm{CO}_{2}=\frac{\mathrm{x}}{16.04} \mathrm{~mol} \mathrm{CO}_{2}+\frac{756-3 \mathrm{x}}{44.09} \mathrm{~mol} \mathrm{CO}_{2}$
$16.996 \mathrm{~mol} \mathrm{CO}_{2}=0.06234 \mathrm{x} \mathrm{mol} \mathrm{CO} 2+(17.147-0.06804 \mathrm{x} \mathrm{mol} \mathrm{CO} 2)$
$16.996=17.147-0.0057 x$
$\mathrm{x}=26.49 \mathrm{~g} \mathrm{CH}_{4} \quad 252-\mathrm{x}=252 \mathrm{~g}-26.49 \mathrm{~g}=225.51 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$
Mass $\% \mathrm{CH}_{4}=\frac{\text { mass of } \mathrm{CH}_{4}}{\text { mass of mixture }}(100)=\frac{26.49 \mathrm{~g} \mathrm{CH}_{4}}{252 \mathrm{~g} \text { mixture }}(100)=\mathbf{1 0 . 5} \% \mathbf{C H}_{4}$

Mass $\% \mathrm{C}_{3} \mathrm{H}_{8}=\frac{\text { mass of } \mathrm{C}_{3} \mathrm{H}_{8}}{\text { mass of mixture }}(100)=\frac{225.51 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}{252 \mathrm{~g} \text { mixture }}(100)=\mathbf{8 9 . 5} \% \mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}$
Plan: If we assume a 100-gram sample of fertilizer, then the 30:10:10 percentages become the masses, in grams, of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$. These masses may be changed to moles of substance, and then to moles of each element. To get the desired $\mathrm{x}: \mathrm{y}: 1.0$ ratio, divide the moles of each element by the moles of potassium. Solution:
A 100-gram sample of 30:10:10 fertilizer contains $30 \mathrm{~g} \mathrm{~N}, 10 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}$, and $10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}$.
Moles of $\mathrm{N}=(30 \mathrm{~g} \mathrm{~N})\left(\frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}\right)=2.1413 \mathrm{~mol} \mathrm{~N}$
Moles of $\mathrm{P}=\left(10 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}\right)\left(\frac{1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}}{141.94 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}} \mathrm{P}_{5}\right)=0.14090 \mathrm{~mol} \mathrm{P}$
Moles of $\mathrm{K}=\left(10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}}{94.20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}}\right)=0.21231 \mathrm{~mol} \mathrm{~K}$
This gives a $\mathrm{N}: \mathrm{P}: \mathrm{K}$ ratio of 2.1413:0.14090:0.21231
The ratio must be divided by the moles of K and rounded.

$$
\begin{array}{ccc}
\frac{2.1413 \mathrm{~mol} \mathrm{~N}}{0.21231}=10.086 & \frac{0.14090 \mathrm{~mol} \mathrm{P}}{0.21231}=0.66365 & \frac{0.21231 \mathrm{~mol} \mathrm{~K}}{0.21231}=1 \\
10.086: 0.66365: 1.000 & \text { or } \quad \mathbf{1 0 : 0 . 6 6 : 1 . 0} &
\end{array}
$$

Plan: If we assume a 100-gram sample of fertilizer, then the 10:10:10 percentages become the masses, in grams, of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$. These masses may be changed to moles of substance, and then to moles of each element. Use the mole ratio between N and ammonium sulfate, P and ammonium hydrogen phsophate, and K and potassium chloride to find the mass of each compound required to provide the needed amount of the respective element. Divide the mass of each compound by the total mass of sample, 100 g , and multiply by 100 for mass \%.
Solution:
Assume a 100 g sample. 10:10:10 indicates $10 \mathrm{~g} \mathrm{~N}, 10 \mathrm{~g} \mathrm{P} 2_{2} \mathrm{O}_{5}$ and $10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}$.
Moles of $\mathrm{N}=(10 \mathrm{~g} \mathrm{~N})\left(\frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}\right)=0.713776 \mathrm{~mol} \mathrm{~N}$
Moles of $\mathrm{P}=\left(10 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}\right)\left(\frac{1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}}{141.94 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}}\right)=0.14090 \mathrm{~mol} \mathrm{P}$
Moles of $\mathrm{K}=\left(10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}}{94.20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}}\right)=0.21231 \mathrm{~mol} \mathrm{~K}$
To obtain 0.713776 mol N from $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$:
$(0.713776 \mathrm{~mol} \mathrm{~N})\left(\frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{2 \mathrm{~mol} \mathrm{~N}}\right)\left(\frac{132.15 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}\right)=47.1627 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
Mass \% $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=\frac{\text { mass of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{\text { mass of mixture }}(100)=\frac{47.1627 \mathrm{~g}^{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}}{100 \mathrm{~g} \text { mixture }}(100)$

$$
=47.1627 \%=47.2 \%\left(\mathbf{N H}_{4}\right)_{2} \mathbf{S O}_{4}
$$

To obtain 0.14090 mol P from $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$:
$(0.14090 \mathrm{~mol} \mathrm{P})\left(\frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}{1 \mathrm{~mol} \mathrm{P}}\right)\left(\frac{132.06 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}\right)=18.6073 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$
Mass \% $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}=\frac{\text { mass of }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}{\text { mass of mixture }}(100)=\frac{18.6073 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}{100 \mathrm{~g} \text { mixture }}(100)$

$$
=18.6073 \%=\mathbf{1 8 . 6 \%}\left(\mathbf{N H}_{4}\right)_{2} \mathbf{H P O}_{4}
$$

To obtain 0.21231 mol K from KCl :
$(0.21231 \mathrm{~mol} \mathrm{~K})\left(\frac{1 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{~K}}\right)\left(\frac{74.55 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}\right)=15.8277 \mathrm{~g} \mathrm{KCl}$
Mass $\% \mathrm{KCl}=\frac{\text { mass of } \mathrm{KCl}}{\text { mass of mixture }}(100)=\frac{15.8277 \mathrm{~g} \mathrm{KCl}}{100 \mathrm{~g} \text { mixture }}(100)=15.8277 \%=\mathbf{1 5 . 8} \% \mathbf{K C l}$

Plan: Write a balanced equation. Convert the mass of strontium sulfate produced to moles and use the mole ratio in the balanced equation to find the moles of strontium halide required to produce that amount of product. Divide the given mass of strontium halide by the moles of strontium halide to obtain its molar mass. Subtracting the molar mass of strontium from the molar mass of compound gives the molar mass of the halogen in the formula. The molar mass of the halogen is used to identify the halogen.
Solution:
$\mathrm{SrX}_{2}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{SrSO}_{4}(s)+2 \mathrm{HX}(a q)$
$0.652 \mathrm{~g} \quad 0.755 \mathrm{~g}$
Moles $\operatorname{SrX}_{2}=\left(0.755 \mathrm{~g} \mathrm{SrSO}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SrSO}_{4}}{183.69 \mathrm{~g} \mathrm{SrSO}_{4}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SrX}_{2}}{1 \mathrm{~mol} \mathrm{SrSO}_{4}}\right)=0.004110186 \mathrm{~mol} \mathrm{SrX}_{2}$
The 0.652 g sample of $\mathrm{Sr}_{2}=0.004110186 \mathrm{~mol}$
$\mathrm{SrX}_{2}=\frac{0.652 \mathrm{~g}}{0.004110186 \mathrm{~mol}}=158.630 \mathrm{~g} / \mathrm{mol}=$ molar mass
Molar mass of $\mathrm{X}_{2}=158.630 \mathrm{~g}$ - molar mass of Sr
Molar mass of $\mathrm{X}_{2}=158.630 \mathrm{~g}-87.62 \mathrm{~g}=71.01 \mathrm{~g}=\mathrm{X}_{2}$
Molar mass of $X=71.01 \mathrm{~g} / 2=35.505=35.5 \mathrm{~g} / \mathrm{mol}=\mathrm{Cl} \quad$ The original halide formula is $\mathbf{S r C l}_{2}$.
3.99 Plan: Assume 100 grams of mixture. This means the mass of each compound, in grams, is the same as its percentage. Find the mass of C from CO and from CO_{2} and add these masses together. For mass $\%$, divide the total mass of C by the mass of the mixture (100 g) and multiply by 100.

Solution:

100 g of mixture $=35 \mathrm{~g} \mathrm{CO}$ and $65 \mathrm{~g} \mathrm{CO}_{2}$.
Mass (g) of C from CO $=(35.0 \mathrm{~g} \mathrm{CO})\left(\frac{1 \mathrm{~mol} \mathrm{CO}}{28.01 \mathrm{~g} \mathrm{CO}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}}\right)\left(\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)=15.007 \mathrm{~g} \mathrm{C}$
Mass (g) of C from $\mathrm{CO}_{2}=\left(65.0 \mathrm{~g} \mathrm{CO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}^{1 \mathrm{~mol} \mathrm{CO}_{2}}}{1 \mathrm{~mol} \mathrm{C}}\right)\left(\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{mo}}\right)=17.738 \mathrm{~g} \mathrm{C}$
Total mass (g) of $\mathrm{C}=15.007 \mathrm{~g}+17.738 \mathrm{~g}=32.745 \mathrm{~g}$ C
Mass \% C $=\frac{\text { mass of } \mathrm{C}}{\text { mass of mixture }}(100)=\frac{32.745 \mathrm{~g} \mathrm{C}}{100 \mathrm{~g} \text { mixture }}(100)=32.745=\mathbf{3 2 . 7 \%} \mathrm{C}$
3.100 Plan: Write a balanced equation for the reaction. Count the molecules of each reactant to obtain the moles of each reactant present. Use the mole ratios in the equation to calculate the amount of product formed. Only 87.0% of the calculated amount of product actually forms, so the actual yield is 87.0% of the theoretical yield.
Solution:
The balanced equation is $\mathrm{SiH}_{4}+\mathrm{N}_{2} \mathrm{~F}_{4} \rightarrow \mathrm{SiF}_{4}+\mathrm{N}_{2}+2 \mathrm{H}_{2}$.
Moles of $\mathrm{SiH}_{4}=\left(3 \mathrm{SiH}_{4}\right.$ molecules $)\left(\frac{1.25 \times 10^{-2} \mathrm{~mol}}{1 \text { molecule }}\right)=0.0375 \mathrm{~mol} \mathrm{SiH}_{4}$
Moles of $\mathrm{N}_{2} \mathrm{~F}_{4}=\left(3 \mathrm{~N}_{2} \mathrm{~F}_{4}\right.$ molecules $)\left(\frac{1.25 \times 10^{-2} \mathrm{~mol}}{1 \text { molecule }}\right)=0.0375 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}$
Since there is an equal amount of each reactant and the ratio between each reactant and SiF_{4} is $1: 1$, neither reactant is in excess and either may by used to calculate the amount of SiF_{4} produced.
Mass (g) of $\mathrm{SiF}_{4}=\left(0.0375 \mathrm{~mol} \mathrm{SiH}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{SiF}_{4}}{1 \mathrm{~mol} \mathrm{SiH}_{4}}\right)\left(\frac{104.09 \mathrm{~g} \mathrm{SiF}_{4}}{1 \mathrm{~mol} \mathrm{SiF}_{4}}\right)=3.903375 \mathrm{~g} \mathrm{SiF}_{4}$
$\%$ yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%$
Actual yield (g) of $\mathrm{SiF}_{4}=\frac{\% \text { yield }}{100 \%}($ theoretical yield $)=\frac{87 \%}{100 \%}\left(3.903375 \mathrm{~g} \mathrm{SiF}_{4}\right)=3.3959=3.4 \mathrm{~g} \mathrm{SiF}_{4}$
3.101 Plan: In combustion analysis, finding the moles of carbon and hydrogen is relatively simple because all of the carbon present in the sample is found in the carbon of CO_{2}, and all of the hydrogen present in the sample is found in the hydrogen of $\mathrm{H}_{2} \mathrm{O}$. Convert the mass of CO_{2} to moles and use the ratio between CO_{2} and C to find the moles and mass of C present. Do the same to find the moles and mass of H from $\mathrm{H}_{2} \mathrm{O}$. Subtracting the masses of C and H from the mass of the sample gives the mass of Fe . Convert the mass of Fe to moles of Fe . Take the moles of C, H, and Fe and divide by the smallest value to convert to whole numbers to get the empirical formula.
Solution:
Ferrocene + ? $\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$0.9437 \mathrm{~g} \quad 2.233 \mathrm{~g} \quad 0.457 \mathrm{~g}$
Moles of $\mathrm{C}=\left(2.233 \mathrm{~g} \mathrm{CO}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)=0.050738 \mathrm{~mol} \mathrm{C}$
Mass (g) of $\mathrm{C}=(0.050738 \mathrm{~mol} \mathrm{C})\left(\frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)=0.60936 \mathrm{~g} \mathrm{C}$
Moles of $\mathrm{H}=\left(0.457 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=0.050721 \mathrm{~mol} \mathrm{H}$
Mass (g) of $\mathrm{H}=(0.050721 \mathrm{~mol} \mathrm{H})\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=0.051127 \mathrm{~g} \mathrm{H}$
Mass (g) of $\mathrm{Fe}=$ Sample mass - (mass of $\mathrm{C}+$ mass of H)

$$
=0.9437 \mathrm{~g}-(0.60936 \mathrm{~g} \mathrm{C}+0.052217 \mathrm{~g} \mathrm{H})=0.283213 \mathrm{~g} \mathrm{Fe}
$$

Moles of $\mathrm{Fe}=(0.283213 \mathrm{~g} \mathrm{Fe})\left(\frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{~g} \mathrm{Fe}}\right)=0.005071 \mathrm{~mol} \mathrm{Fe}$
Preliminary formula $=\mathrm{C}_{0.050738} \mathrm{H}_{0.050721} \mathrm{Fe}_{0.005071}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{C}_{\frac{0.050738}{0.005071}} \mathrm{H}_{0.050721}^{0.005071} \mathrm{Fe}_{0.005071}^{0.005071} \rightarrow \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Fe}_{1}
$$

Empirical formula $=\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{1 0}} \mathbf{F e}$

3.102 Plan: Determine the molecular formula from the figure. Once the molecular formula is known, use the periodic table to determine the molar mass. Convert the volume of lemon juice in part b) from qt to mL and use the density to convert from mL to mass in g. Take 6.82% of that mass to find the mass of citric acid and use the molar mass to convert to moles.
Solution:
a) The formula of citric acid obtained by counting the number of carbon atoms, oxygen atoms, and hydrogen atoms is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$.

Molar mass $=(6 \times 12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})+(8 \times 1.008 \mathrm{~g} / \mathrm{mol} \mathrm{H})+(7 \times 16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=\mathbf{1 9 2 . 1 2} \mathbf{g} / \mathbf{m o l}$
b) Converting volume of lemon juice in qt to mL :

Volume (mL) of lemon juice $=(1.50 \mathrm{qt})\left(\frac{1 \mathrm{~L}}{1.057 \mathrm{qt}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=1419.111 \mathrm{~mL}$
Converting volume to mass in grams:
Mass (g) of lemon juice $=(1419.111 \mathrm{~mL})\left(\frac{1.09 \mathrm{~g}}{\mathrm{~mL}}\right)=1546.831 \mathrm{~g}$ lemon juice

Mass (g) of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}=(1546.831 \mathrm{~g}$ lemon juice $)\left(\frac{6.82 \% \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}{100 \% \text { lemon juice }}\right)=105.494 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
Moles of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}=\left(105.494 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}{192.12 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}}\right)=0.549104=\mathbf{0 . 5 4 9} \mathbf{~ m o l ~ C} \mathbf{6} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{7}$

Plan: For parts a) and b), convert the masses to moles. Take the moles and divide by the smallest value to convert to whole numbers to get the empirical formula. For part c), write the two balanced equations and use two equations as shown.
Solution:
a) Moles of $\mathrm{Pt}=(0.327 \mathrm{~g} \mathrm{Pt})\left(\frac{1 \mathrm{~mol} \mathrm{Pt}}{195.1 \mathrm{~g} \mathrm{Pt}}\right)=0.001676 \mathrm{~mol} \mathrm{Pt}$

Mass (g) of $\mathrm{F}=$ mass of product - mass of $\mathrm{Pt}=0.519 \mathrm{~g}-0.327 \mathrm{~g}=0.192 \mathrm{~g} \mathrm{~F}$
Moles of $\mathrm{F}=(0.192 \mathrm{~g} \mathrm{~F})\left(\frac{1 \mathrm{~mol} \mathrm{~F}}{19.00 \mathrm{~g} \mathrm{~F}}\right)=0.010105 \mathrm{~mol} \mathrm{~F}$
Preliminary formula $=\mathrm{Pt}_{0.001676} \mathrm{~F}_{0.010105}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\begin{aligned}
& \mathrm{Pt}_{\frac{0.001676}{0.001676}} \frac{\mathrm{~F}_{0.0010105}}{0.001676}
\end{aligned} \rightarrow \mathrm{Pt}_{1} \mathrm{~F}_{6} .
$$

b) Moles of $\operatorname{PtF}_{6}=\left(0.265 \mathrm{~g} \mathrm{PtF}_{6}\right)\left(\frac{1 \mathrm{~mol} \mathrm{PtF}_{6}}{309.1 \mathrm{~g} \mathrm{PtF}_{6}}\right)=0.0008576 \mathrm{~mol} \mathrm{PtF} 6$

Mass of $\mathrm{Xe}=$ mass of product - mass of $\mathrm{Xe}=0.378 \mathrm{~g}-0.265 \mathrm{~g}=0.113 \mathrm{~g} \mathrm{Xe}$
Moles of $\mathrm{Xe}=(0.113 \mathrm{~g} \mathrm{Xe})\left(\frac{1 \mathrm{~mol} \mathrm{Xe}}{131.3 \mathrm{~g} \mathrm{Xe}}\right)=0.0008606 \mathrm{~mol} \mathrm{Xe}$
Preliminary formula $=\mathrm{Xe}_{0.0008606}\left(\mathrm{PtF}_{6}\right)_{0.0008576}$
Converting to integer subscripts (dividing all by the smallest subscript):

$$
\mathrm{Xe}_{\frac{0.0008606}{0.0008576}}\left(\operatorname{PtF}_{6}\right)_{\frac{0.0008576}{0.0008576}} \rightarrow \mathrm{Xe}_{1}\left(\mathrm{PtF}_{6}\right)_{1}
$$

Empirical formula $=\mathbf{X e P t F}_{\mathbf{6}}$
c) This problem can be solved as a system of two equations and two unknowns.

The two equations are: The two unknowns are:
$\mathrm{Xe}(g)+2 \mathrm{~F}_{2}(g) \rightarrow \mathrm{XeF}_{4}(s) \quad \mathrm{x}=\mathrm{mol} \mathrm{XeF} 4$ produced
$\mathrm{Xe}(g)+3 \mathrm{~F}_{2}(g) \rightarrow \mathrm{XeF}_{6}(s) \quad \mathrm{y}=\mathrm{mol} \mathrm{XeF}_{6}$ produced
Moles of Xe consumed $=1.85 \times 10^{-4} \mathrm{~mol}$ present $-9.00 \times 10^{-6} \mathrm{~mol}$ excess $=1.76 \times 10^{-4} \mathrm{~mol} \mathrm{Xe}$
Then $\quad x+y=1.76 \times 10^{-4} \mathrm{~mol}$ Xe consumed

$$
2 x+3 y=5.00 \times 10^{-4} \mathrm{~mol} \mathrm{~F}_{2} \text { consumed }
$$

Solve for x using the first equation and substitute the value of x into the second equation:

$$
\begin{aligned}
& x=1.76 \times 10^{-4}-y \\
& 2\left(1.76 \times 10^{-4}-y\right)+3 y=5.00 \times 10^{-4} \\
& \left(3.52 \times 10^{-4}\right)-2 y+3 y=5.00 \times 10^{-4} \\
& y=\left(5.00 \times 10^{-4}\right)-\left(3.52 \times 10^{-4}\right)=1.48 \times 10^{-4} \mathrm{~mol} \mathrm{XeF}_{6} \\
& x=\left(1.76 \times 10^{-4}\right)-\left(1.48 \times 10^{-4}\right)=2.8 \times 10^{-5} \mathrm{~mol} \mathrm{XeF}_{4}
\end{aligned}
$$

Converting moles of each product to grams using the molar masses:
Mass (g) of $\mathrm{XeF}_{4}=\left(2.8 \times 10^{-5} \mathrm{~mol} \mathrm{XeF}_{4}\right)\left(\frac{207.3 \mathrm{~g} \mathrm{XeF}_{4}}{1 \mathrm{~mol} \mathrm{XeF}_{4}}\right)=5.8044 \times 10^{-3} \mathrm{~g} \mathrm{XeF}_{4}$
Mass (g) of $\mathrm{XeF}_{6}=\left(1.48 \times 10^{-4} \mathrm{~mol} \mathrm{XeF}_{6}\right)\left(\frac{245.3 \mathrm{~g} \mathrm{XeF}_{6}}{1 \mathrm{~mol} \mathrm{XeF}_{6}}\right)=3.63044 \times 10^{-2} \mathrm{~g} \mathrm{XeF}_{6}$

Calculate the percent of each compound using the total weight of the products:
3.104 Plan: Use the mass percent to find the mass of heme in the sample; use the molar mass to convert the mass of heme to moles. Then find the mass of Fe in the sample by using the mole ratio between heme and iron. The mass of hemin is found by using the mole ratio between heme and hemoglobin.
Solution:
a) Mass (g) of heme $=(0.65 \mathrm{~g}$ hemoglobin $)\left(\frac{6.0 \% \text { heme }}{100 \% \text { hemoglobin }}\right)=\mathbf{0 . 0 3 9} \mathbf{g}$ heme
b) Moles of heme $=(0.039 \mathrm{~g}$ heme $)\left(\frac{1 \mathrm{~mol} \text { heme }}{616.49 \mathrm{~g} \text { heme }}\right)=6.32614 \times 10^{-5}=\mathbf{6 . 3 \times 1 0 ^ { - 5 }} \mathbf{~ m o l}$ heme
c) Mass (g) of $\mathrm{Fe}=\left(6.32614 \times 10^{-5} \mathrm{~mol}\right.$ heme $)\left(\frac{1 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{heme}}\right)\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}\right)$

$$
=3.5331 \times 10^{-3}=3.5 \times 10^{-3} \mathbf{g ~ F e}
$$

d) Mass (g) of hemin $=\left(6.32614 \times 10^{-5} \mathrm{~mol}\right.$ heme $)\left(\frac{1 \mathrm{~mol} \text { hemin }}{1 \mathrm{~mol} \text { heme }}\right)\left(\frac{651.94 \mathrm{~g} \text { hemin }}{1 \mathrm{~mol} \mathrm{hemin}}\right)$

$$
=4.1243 \times 10^{-2}=4.1 \times 10^{-2} \mathbf{g} \text { hemin }
$$

3.105 Plan: Find the Mn:O ratio in the two oxides. Write two equations to solve simultaneously; one equation shows that the sum of the ratio of Mn in the two oxides will equal the ratio of Mn in the sample and the other equation shows that the total amount of oxide in the sample is the sum of the amounts of the two oxides. The two equations will give the mole ratio of the two oxides. Convert moles of each oxide to mass to obtain the mass ratio of the two oxides from which the mass $\%$ of each can be calculated. Use that mass $\%$ of each to find the mass of each in the sample. For part b), the moles of Mn^{3+} come from the $\mathrm{Mn}_{2} \mathrm{O}_{3}$ and the moles of Mn^{2+} come from the MnO .
Solution:
Mn:O ratio:

In sample:	$1.00: 1.42$	or	0.704
In braunite:	$2.00: 3.00$	or	0.667
In manganosite:	$1.00: 1.00$	or	1.00

a) The total amount of ore is equal to the amount of braunite (B) + the amount of manganosite (M).

$$
B+M=1.00
$$

$$
\mathrm{M}=1.00-\mathrm{B}
$$

The amount of Mn is dependent on the sample's composition.
$\mathrm{M}(1.00)+\mathrm{B}(0.667)=0.704$
$(1.00-B)(1.00)+B(0.667)=0.704$
$1.00-1.00 \mathrm{~B}+0.667 \mathrm{~B}=0.704$
$0.296=0.333 \mathrm{~B}$
$\mathrm{B}=0.888889 \mathrm{~mol}$ braunite
$\mathrm{M}=1.00-\mathrm{B}=1.00=0.888889=0.111111 \mathrm{~mol}$ manganosite
Mass (g) of braunite $=(0.888889 \mathrm{~mol})\left(\frac{157.88 \mathrm{~g}}{1 \mathrm{~mol}}\right)=140.338 \mathrm{~g}$ braunite
Mass (g) of manganosite $=(0.111111 \mathrm{~mol})\left(\frac{70.94 \mathrm{~g}}{1 \mathrm{~mol}}\right)=7.88221 \mathrm{~g}$ manganosite
There are 140.338 g of braunite for every 7.88221 g of manganosite. Finding mass \% of each:

$$
\begin{aligned}
& \left(5.8044 \times 10^{-3}+3.63044 \times 10^{-2}\right) \mathrm{g}=0.0421088 \mathrm{~g} \\
& \text { Mass } \% \mathrm{XeF}_{4}=\frac{\left.{\text { mass of } \mathrm{XeF}_{4}}_{\text {total mass }}(100)=\frac{5.8044 \times 10^{-3} \mathrm{~g} \mathrm{XeF}_{4}}{0.0421088 \mathrm{~g}}(100)=13.784=\mathbf{1 4} \% \mathbf{X e F}_{4},{ }^{2}\right)}{}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mass \% braunite }=\frac{\text { mass of braunite }}{\text { mass of braunite }+ \text { manganosite }}(100)=\frac{140.338 \mathrm{~g}}{140.338+7.88221 \mathrm{~g}}(100)=94.6821 \% \\
& \begin{aligned}
\text { Mass \% manganosite } & =\frac{\text { mass of manganosite }}{\text { mass of braunite + manganosite }}(100)=\frac{7.88221 \mathrm{~g}}{140.338+7.88221 \mathrm{~g}}(100) \\
& =5.3179 \%
\end{aligned}
\end{aligned}
$$

In the 542.3 g sample:
Mass (g) of braunite $=(542.3 \mathrm{~g}$ sample $)\left(\frac{94.6821 \text { braunite }}{100 \% \text { sample }}\right)=513.461=513$ g braunite
Mass (g) of manganosite $=(542.3 \mathrm{~g}$ sample $)\left(\frac{5.3179 \% \text { manganosite }}{100 \% \text { sample }}\right)=28.839=\mathbf{2 8 . 8} \mathbf{g}$ manganosite
b) Each mole of braunite, $\mathrm{Mn}_{2} \mathrm{O}_{3}$, contains 2 moles of Mn^{3+} while each mole of manganosite, MnO , contains 1 mole of Mn^{2+}.
Moles of $\mathrm{Mn}^{\dot{3+}}=2(0.888889 \mathrm{~mol}$ braunite $)=1.777778 \mathrm{~mol} \mathrm{Mn}{ }^{3+}$
Moles of $\mathrm{Mn}^{2+}=1(0.111111 \mathrm{~mol}$ manganosite $)=0.111111 \mathrm{~mol} \mathrm{Mn}^{2+}$
$\mathrm{Mn}^{3+}: \mathrm{Mn}^{2+}=\frac{1.777778 \mathrm{~mol} \mathrm{Mn}^{3+}}{0.111111 \mathrm{~mol} \mathrm{Mn}^{2+}}=16.000=\mathbf{1 6 . 0}$
3.106 Plan: First, balance the chemical equation. To determine which reactant is limiting, calculate the amount of hydroxyapatite formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the amount of hydroxyapatite formed.
Solution:
a) $5 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+3 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})(\mathrm{s})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) Find the limiting reagent.

Moles of $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})$ from $\mathrm{Ca}(\mathrm{OH})_{2}=\left(100 . \mathrm{g} \mathrm{Ca}(\mathrm{OH})_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})}{5 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}\right)$
$=0.2699055 \mathrm{~mol} \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})$
Moles of $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})$ from $\mathrm{H}_{3} \mathrm{PO}_{4}=$
(100. $\mathrm{g} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution) $\left(\frac{85 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}{100 . \mathrm{g} \mathrm{H}_{3} \mathrm{PO}_{4} \text { solution }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}{97.99 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})}{3 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}\right)$

$$
=0.2891452 \mathrm{~mol} \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})
$$

$\mathrm{Ca}(\mathrm{OH})_{2}$ is the limiting reactant, and will be used to calculate the yield.
$\left(100 . \mathrm{g} \mathrm{Ca}(\mathrm{OH})_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})}{5{\mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}^{4}}\right)\left(\frac{502.32 \mathrm{~g} \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})}{1 \mathrm{molCa}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{OH})}\right)$

$$
=135.57893=\mathbf{1 4 0} \mathbf{g ~ C a}_{\mathbf{5}}\left(\mathbf{P O}_{4}\right)_{\mathbf{3}}(\mathbf{O H})
$$

3.107 Plan: To determine which reactant is limiting, calculate the amount of aspirin formed from each reactant, assuming an excess of the other reactant. Use the density of acetic anhydride to determine the amount of this reactant in grams. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the theoretical yield of aspirin. The actual yield divided by the theoretical yield just calculated (with the result multiplied by 100\%) gives the percent yield. Use the formula for percent atom economy to determine that quantity.
Solution:
a) Finding the moles of aspirin from the moles of $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ (if $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ is limiting):

$$
\text { Moles of aspirin from } \begin{aligned}
\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3} & =\left(3.077 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}}{138.12 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}}\right) \\
& =0.0222777 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}
\end{aligned}
$$

Finding the moles of aspirin from the moles of $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$ (if $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$ is limiting):
Mass (g) of $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}=\left(5.50 \mathrm{~mL}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}\right)\left(\frac{1.080 \mathrm{~g}}{1 \mathrm{~mL}}\right)=5.94 \mathrm{~g}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
Moles of aspirin from $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}=\left(5.94 \mathrm{~g}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}}{\left.102.09 \mathrm{~g} \mathrm{(CH} 3_{3} \mathrm{CO}\right)_{2} \mathrm{O}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{1 \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}}\right)$

$$
=0.058183955 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}
$$

The limiting reactant is $\mathbf{C}_{7} \mathbf{H}_{6} \mathbf{O}_{3}$.
b) First, calculate the theoretical yield from the limiting reagent:

Mass (g) of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}=\left(3.077 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}}{138.12 \mathrm{~g} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}}\right)\left(\frac{180.15 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}}\right)$

$$
=4.01333 \mathrm{~g} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}
$$

Percent yield $=\left(\frac{\text { actual yield }}{\text { theoretical yield }}\right) \times 100 \%=\left(\frac{3.281 \mathrm{~g}}{4.01333 \mathrm{~g}}\right) \times 100 \%=81.7526=\mathbf{8 1 . 7 5 \%}$ yield
3.108 Plan: Determine the formula and the molar mass of each compound. The formula gives the relative number of moles of nitrogen present. Multiply the number of moles of nitrogen by its molar mass to find the total mass of nitrogen in 1 mole of compound. Mass percent $=\frac{\text { total mass of element }}{\text { molar mass of compound }}(100)$. For part b), convert mass of ornithine to moles, use the mole ratio between ornithine and urea to find the moles of urea, and then use the ratio between moles of urea and nitrogen to find the moles and mass of nitrogen produced.

Solution:

a) Urea: $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}, \boldsymbol{\mathcal { M }}=60.06 \mathrm{~g} / \mathrm{mol}$

There are 2 moles of N in 1 mole of $\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$.
Mass (g) of $\mathrm{N}=(2 \mathrm{~mol} \mathrm{~N})\left(\frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}\right)=28.02 \mathrm{~g} \mathrm{~N}$
Mass percent $=\frac{\text { total mass } \mathrm{N}}{\text { molar mass of compound }}(100)=\frac{28.02 \mathrm{~g} \mathrm{~N}}{60.06 \mathrm{~g} \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}}(100)=46.6533=\mathbf{4 6 . 6 5 \%} \mathbf{N}$ in urea
Arginine: $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}, \boldsymbol{\mathcal { M }}=175.22 \mathrm{~g} / \mathrm{mol}$
There are 4 moles of N in 1 mole of $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}$.
Mass (g) of $\mathrm{N}=(4 \mathrm{~mol} \mathrm{~N})\left(\frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}\right)=56.04 \mathrm{~g} \mathrm{~N}$
Mass percent $=\frac{\text { total mass } \mathrm{N}}{\text { molar mass of compound }}(100)=\frac{56.04 \mathrm{~g} \mathrm{~N}}{175.22 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}}(100)$

$$
=31.98265=31.98 \% \mathbf{N} \text { in arginine }
$$

Ornithine: $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}, \boldsymbol{M}=133.17 \mathrm{~g} / \mathrm{mol}$
There are 2 moles of N in 1 mole of $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$.
Mass (g) of $\mathrm{N}=(2 \mathrm{~mol} \mathrm{~N})\left(\frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}\right)=28.02 \mathrm{~g} \mathrm{~N}$
Mass percent $=\frac{\text { total mass } \mathrm{N}}{\text { molar mass of compound }}(100)=\frac{28.02 \mathrm{~g} \mathrm{~N}}{133.17 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}}(100)$

$$
\begin{equation*}
=21.04077=21.04 \% \mathrm{~N} \text { in ornithine } \tag{100}
\end{equation*}
$$

b) Moles of urea $=\left(135.2\right.$ g C $\left._{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}}{133.17 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}}\right)=1.015244$ mol urea

Mass (g) of nitrogen $=\left(1.015244 \mathrm{~mol} \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)\left(\frac{2 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}}\right)\left(\frac{14.01 \mathrm{~g} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{~N}}\right)=28.447=28.45 \mathrm{~g} \mathrm{~N}$
3.109 Plan: Write and balance the chemical reaction. Use the mole ratio to find the amount of product that should be produced and take 66% of that amount to obtain the actual yield.
Solution:
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
With 6 molecules of NO and 3 molecules of O_{2} reacting, 6 molecules of NO_{2} can be produced.
If the reaction only has a 66% yield, then $(0.66)(6)=4$ molecules of NO_{2} will be produced. Circle A shows the formation of 4 molecules of NO_{2}. Circle B also shows the formation of 4 molecules of NO_{2} but also has 2 unreacted molecules of NO and 1 unreacted molecule of O_{2}. Since neither reactant is limiting, there will be no unreacted reactant remaining after the reaction is over.
3.110 Plan: First balance the given chemical equation. To determine which reactant is limiting, calculate the amount of ZnS formed from each reactant, assuming an excess of the other reactant. The reactant that produces less product is the limiting reagent. Use the limiting reagent and the mole ratio from the balanced chemical equation to determine the theoretical yield of ZnS . The actual yield divided by the theoretical yield just calculated (with the result multiplied by 100%) gives the percent yield. For part b), determine the mass of Zn that does not produce ZnS ; use that amount of zinc and the mole ratio between Zn and ZnO in that reaction to determine the mass of ZnO produced. Find the moles of S_{8} in the reactant and the moles of S_{8} in the product ZnS . The difference between these two amounts is the moles of S_{8} in SO_{2}.
Solution:
a) The balanced equation is $8 \mathrm{Zn}(s)+\mathrm{S}_{8}(\mathrm{~s}) \rightarrow 8 \mathrm{ZnS}(s)$.

Finding the limiting reagent:
Finding the moles of ZnS from the moles of Zn (if S_{8} is limiting):
Moles of ZnS from $\mathrm{Zn}=(83.2 \mathrm{~g} \mathrm{Zn})\left(\frac{1 \mathrm{~mol} \mathrm{Zn}}{65.41 \mathrm{~g} \mathrm{Zn}}\right)\left(\frac{8 \mathrm{~mol} \mathrm{ZnS}}{8 \mathrm{~mol} \mathrm{Zn}}\right)=1.27198 \mathrm{~mol} \mathrm{ZnS}$
Finding the moles of ZnS from the moles of S_{8} (if Zn is limiting):
Moles of ZnS from $\mathrm{S}_{8}=\left(52.4 \mathrm{~g} \mathrm{~S}_{8}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{256.56 \mathrm{~g} \mathrm{~S}_{8}}\right)\left(\frac{8 \mathrm{~mol} \mathrm{ZnS}}{1 \mathrm{~mol} \mathrm{~S}_{8}}\right)=1.6339 \mathrm{~mol} \mathrm{ZnS}$
The zinc will produce less zinc sulfide, thus, zinc is the limiting reactant and will first be used to determine the theoretical yield and then the percent yield.
Theoretical yield (g) of $\mathrm{ZnS}=(83.2 \mathrm{~g} \mathrm{Zn})\left(\frac{1 \mathrm{~mol} \mathrm{Zn}}{65.41 \mathrm{~g} \mathrm{Zn}}\right)\left(\frac{8 \mathrm{~mol} \mathrm{ZnS}}{8 \mathrm{~mol} \mathrm{Zn}}\right)\left(\frac{97.48 \mathrm{~g} \mathrm{ZnS}}{1 \mathrm{~mol} \mathrm{ZnS}}\right)$

$$
\text { = } 123.9923 \text { g ZnS (unrounded) }
$$

Percent yield $=\left(\frac{\text { actual Yield }}{\text { theoretical Yield }}\right) \times 100 \%=\left(\frac{104.4 \mathrm{~g}}{123.9923 \mathrm{~g}}\right) \times 100 \%=84.1988=\mathbf{8 4 . 2 \%}$ yield
b) The reactions with oxygen are:
$2 \mathrm{Zn}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s})$
$\mathrm{S}_{8}(\mathrm{~s})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{SO}_{2}(\mathrm{~g})$
The theoretical yield indicates that 84.2% of the zinc produced zinc sulfide so $(100-84.2) \%=15.8 \%$ of the zinc became zinc oxide. This allows the calculation of the amount of zinc oxide formed.
Mass (g) of Zn that does not produce $\mathrm{ZnS}=(83.2 \mathrm{~g} \mathrm{Zn})\left(\frac{15.8 \%}{100 \%}\right)=13.1456 \mathrm{~g} \mathrm{ZnS}$
Mass (g) of $\mathrm{ZnO}=(13.1456 \mathrm{~g} \mathrm{Zn})\left(\frac{1 \mathrm{~mol} \mathrm{Zn}}{65.41 \mathrm{~g} \mathrm{Zn}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{ZnO}}{2 \mathrm{~mol} \mathrm{Zn}}\right)\left(\frac{81.41 \mathrm{~g} \mathrm{ZnO}}{1 \mathrm{~mol} \mathrm{ZnO}}\right)=16.3612=\mathbf{1 6 . 4} \mathbf{g ~ Z n O}$
The calculation is slightly different for the sulfur. We need to determine the amount of sulfur not in zinc sulfide. The sulfur not in the zinc sulfide must be in sulfur dioxide. The amount of sulfur not in zinc sulfide will be converted to the mass of sulfur dioxide.
Moles of S_{8} in original S_{8} reactant $=\left(52.4 \mathrm{~g} \mathrm{~S}_{8}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{256.56 \mathrm{~g} \mathrm{~S}_{8}}\right)=0.204241 \mathrm{~mol} \mathrm{~S}_{8}$

Moles of S_{8} in ZnS product $=(104.4 \mathrm{~g} \mathrm{ZnS})\left(\frac{1 \mathrm{~mol} \mathrm{ZnS}}{97.48 \mathrm{~g} \mathrm{ZnS}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{8 \mathrm{~mol} \mathrm{ZnS}}\right)=0.133874 \mathrm{~mol} \mathrm{~S}_{8}$
Moles of S_{8} in $\mathrm{SO}_{2}=0.204241-0.133874 \mathrm{ml}=0.070367 \mathrm{~mol} \mathrm{~S}_{8}$
Mass (g) of $\mathrm{SO}_{2}=\left(0.070367 \mathrm{~mol} \mathrm{~S}_{8}\right)\left(\frac{8 \mathrm{~mol} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{~S}_{8}}\right)\left(\frac{64.07 \mathrm{~g} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{SO}_{2}}\right)=36.0673=\mathbf{3 6 . 1} \mathbf{g ~ S O}_{2}$
3.111 Plan: Use the given values of x to find the molar mass of each compound. . To determine which reactant is limiting, calculate the amount of either product formed from each reactant, assuming an excess of the other reactants. The reactant that produces the smallest amount of product is the limiting reagent. To find the mass of excess reactants, find the mass of each excess reactant that is required to react with the limiting reagent and subtract that mass from the starting mass.
a) $x=0$
$\mathrm{La}_{2} \mathrm{Sr}_{0} \mathrm{CuO}_{4}=2(138.9 \mathrm{~g} / \mathrm{mol} \mathrm{La})+0(87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+1(63.55 \mathrm{~g} / \mathrm{mol} \mathrm{Cu})+4(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=405.4 \mathrm{~g} / \mathbf{m o l}$
$\mathrm{x}=1$
$\mathrm{La}_{1} \mathrm{Sr}_{1} \mathrm{CuO}_{4}=1(138.9 \mathrm{~g} / \mathrm{mol} \mathrm{La})+1(87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+1(63.55 \mathrm{~g} / \mathrm{mol} \mathrm{Cu})+4(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O})=\mathbf{3 5 4 . 1} \mathbf{~ g} / \mathbf{m o l}$ $\mathrm{x}=0.163$
$\mathrm{La}_{(2-0.163)} \mathrm{Sr}_{0.163} \mathrm{CuO}_{4}=\mathrm{La}_{1.837} \mathrm{Sr}_{0.163} \mathrm{CuO}_{4}$

$$
\begin{aligned}
& =1.837(138.9 \mathrm{~g} / \mathrm{mol} \mathrm{La})+0.163(87.62 \mathrm{~g} / \mathrm{mol} \mathrm{Sr})+1(63.55 \mathrm{~g} / \mathrm{mol} \mathrm{Cu})+4(16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}) \\
& =397.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

b) Assuming x grams to be the "equal" mass leads to:

Moles of product from $\mathrm{BaCO}_{3}=(\mathrm{x} \mathrm{g} \mathrm{BaCO} 3)\left(\frac{1 \mathrm{~mol} \mathrm{BaCO}_{3}}{197.3 \mathrm{~g} \mathrm{BaCO}_{3}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}}{4 \mathrm{~mol} \mathrm{BaCO}} 33\right)$

$$
=0.002534 \mathrm{x} \text { mol product }
$$

Moles of product from $\mathrm{CuO}=(x \mathrm{~g} \mathrm{CuO})\left(\frac{1 \mathrm{~mol} \mathrm{CuO}}{79.55 \mathrm{~g} \mathrm{CuO}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}}{6 \mathrm{~mol} \mathrm{CuO}}\right)=0.004190 x$ mol product
Moles of product from $\mathrm{Y}_{2} \mathrm{O}_{3}=\left(\mathrm{x} \mathrm{g} \mathrm{Y} \mathrm{Y}_{2} \mathrm{O}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Y}_{2} \mathrm{O}_{3}}{225.82 \mathrm{~g} \mathrm{Y}_{2} \mathrm{O}_{3}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}}{1 \mathrm{~mol} \mathrm{Y}_{2} \mathrm{O}_{3}}\right)=0.008857 \mathrm{x}$ mol product
$\mathbf{B a C O}_{3}$ is the limiting reactant.
c) These calculations are based on the limiting reactant.
BaCO_{3} remaining $=0 \%$ (limiting reagent)
CuO remaining $=\mathrm{xg} \mathrm{CuO}-\left(\mathrm{x} \mathrm{g} \mathrm{BaCO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{BaCO}_{3}}{197.3 \mathrm{~g} \mathrm{BaCO}_{3}}\right)\left(\frac{6 \mathrm{~mol} \mathrm{CuO}}{4 \mathrm{~mol} \mathrm{BaCO}_{3}}\right)\left(\frac{79.55 \mathrm{~g} \mathrm{CuO}}{1 \mathrm{~mol} \mathrm{CuO}}\right)$ $=0.39521 \mathrm{x} \mathrm{g} \mathrm{CuO}$
Percent $\mathrm{CuO}=\left(\frac{0.39521 \mathrm{x} \mathrm{g}}{\mathrm{x} \mathrm{g}}\right) \times 100 \%=39.521=39.52 \%$ CuO remaining
$\mathrm{Y}_{2} \mathrm{O}_{3}$ remaining $=\mathrm{x} \mathrm{g} \mathrm{Y} \mathrm{Y}_{2} \mathrm{O}_{3}-(\mathrm{x} \mathrm{g} \mathrm{BaCO} 3)\left(\frac{1 \mathrm{~mol} \mathrm{BaCO}_{3}}{197.3 \mathrm{~g} \mathrm{BaCO}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Y}_{2} \mathrm{O}_{3}}{4 \mathrm{~mol} \mathrm{BaCO}_{3}}\right)\left(\frac{225.82 \mathrm{~g} \mathrm{Y}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Y}_{2} \mathrm{O}_{3}}\right)$

$$
=0.713862 \mathrm{x} \mathrm{~g} \mathrm{Y}_{2} \mathrm{O}_{3}
$$

Percent $\mathrm{Y}_{2} \mathrm{O}_{3}=\left(\frac{0.713862 \mathrm{x} \mathrm{g}}{\mathrm{x} \mathrm{g}}\right) \times 100 \%=71.3862=\mathbf{7 1 . 3 9} \% \mathbf{Y}_{2} \mathbf{O}_{3}$ remaining

